
z/OS Assembler Programming Part 1: Beginnings

z/OS Assembler Programming Part 1: Beginnings - Course Objectives

On successful completion of this course, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code a program in Assembler language that uses the following techniques:

a. Use standard save area linkage techniques

b. Define and process sequential files with fixed length records, including

* Reading and writing records from / to DASD files

* Reading and writing records from / to tape files

* Writing records to print files, including formatting detail lines, but not
using carriage control characters or other report management
techniques

c. Perform calculations using packed decimal arithmetic, including formatting
results with edit patterns and half-adjusting results

d. Perform calculations using binary integer arithmetic

e. Work with data in tables, including defining and accessing the elements
in a table

f. Use DSECTs to describe structures

g. Use multiple base registers

2. Document the program listing with comments to assist in maintenance and
 understanding of the code

3. Debug the resulting code of program-check type errors

Note: This course supports OS/390 and z/OS operating system environments.

1

C410 / 5 Days These Materials Copyright Ó 2024 by Steven H. Comstock V14.3

z/OS Assembler Programming Part 1: Beginnings - Topical Outline

Day One

Fundamentals
Programming Concepts
Source, Object, and Load Modules
Memory and Data Representation
Addresses
The CPU
Computer Exercise: Setting Up For Programming 29

Machine Instruction Formats
Base / Displacement Addresses
Assembler Language and the High Level Assembler (HLASM)
Basic Program Structure Requirements
Computer Exercise: Coding, Assembling, Linking, Running 53

Data Description, Moving Data, Record Processing
Defining Constants and Work Areas (DS / DC Statements for Character Data)
MVC instruction
Instruction Styles and Formats
Introduction to Branching
Introduction to Record Processing
Data Organization
DCB Macros
OPEN, CLOSE, GET, PUT Macros
Record Processing - An Example
Computer Exercise: File To File Program .. 86

Compares, Branches, and Linkages
Record Layouts
Programming Techniques: MVC
CLC Instruction and the Condition Code
BC, BCR Instructions and Extended mnemonics
BAS, BASR, BAL, BALR, IPM Instructions

Day Two

More on Addressability
What Can Go Wrong?
Storage Protect Keys
Computer Exercise: List Fields From A Record 109

2

C410 / 5 Days These Materials Copyright Ó 2024 by Steven H. Comstock V14.3

z/OS Assembler Programming Part 1: Beginnings - Topical Outline, p. 2.

Day Two, continued

Packed Decimal Arithmetic
Zoned Decimal Format
Packed Decimal Format
DC and DS for Zoned and Packed Type Data
Packed Decimal Instruction Set: PACK, UNPK, ZAP, CP, AP, SP, MP, DP
Arithmetic Concerns: Significant digits and Keeping Track of Decimal Points
Computer Exercise: Packed Decimal Calculations 145

More Assembler and Arithmetic Concepts
Redefining Storage
Creating Data Structures
The Assembly Listing Components
Assembly Listing Control
Introduction to Debugging
Rounding
MVO - Move With Offset
SRP - Shift and Round Packed
SRP vs MVO
Computer Exercise: Half-Adjusting Data .. 177

Day Three

Editing Packed Decimal Fields
DS / DC for Hexadecimal Data
"ED" Instruction
Edit Patterns
Computer Exercise: Edit Packed Decimal Data 190

A Deeper Look at Instruction Formats
DC / DS for Binary Data Type
Addresses in Instructions
Tables
LA Instruction
Instruction Formats (SS, RR, RX)
MVI, CLI Instructions
Instruction Formats (SI)
MVN, MVZ Instructions
Computer Exercise: Using Immediate Instructions 214

3

C410 / 5 Days These Materials Copyright Ó 2024 by Steven H. Comstock V14.3

z/OS Assembler Programming Part 1: Beginnings - Topical Outline, p. 3.

Day Three, continued

Binary Integer Data
Binary Integer Data Formats
Two's Complement
DC/DS for Fullword, Halfword, and Doubleword Binary Data
Boundary Alignment
CVB, CVD Instructions
L, LR, ST Instructions
A, AR, S, SR, C, CR, MR, M, DR, D Instructions
Concerns Of Working With Binary Integers
Working With Binary Numbers - An Example
Computer Exercise: Binary Arithmetic Computations 250

Day Four

More Binary Instructions
Compare Instrucions
LPR, LNR, LCR Instructions
"Logical Arithmetic": AL, ALR, CL, CLR, SL, SLR
Halfword Instructions: AH, CH, LH, MH, SH, STH

EDMK
EDMK Instruction
Computer Exercise: Floating Dollar Sign .. 260

Loops and Tables
Literals
LTORG
Address Constants
EQU - Equate Symbol
Loop Control
Tables
BCT, BCTR, BXLE, BXH, IC, STC
Computer Exercise: Table Processing ..282

4

C410 / 5 Days These Materials Copyright Ó 2024 by Steven H. Comstock V14.3

z/OS Assembler Programming Part 1: Beginnings - Topical Outline, p. 4.

Day Five

Multiple base registers, DSECTS, ORG
STM, LM
Multiple Base Registers
CNOP
Dummy Sections - DSECTs
ORG
Computer Exercise: Using DSECTs..300

Working With Bits
O, OC, OR, OI, N, NC, NR, NI, X, XC, XR, XI Instructions
Sorting Tables
LTR, TM Instructions
More on EQU
Computer Exercise: Sorting a Table ... 318

Shift Instructions
SRL, SRA, SLL, SLA, SRDL, SRDA, SLDL, SLDA Instructions

Translate
Instruction Set: TR
Code Fragments: Display Hex String and Direct Access to a Table
Computer Exercise: Build a Table Dynamically 337

TRT and EX
TRT - Translate and Test
EX - Execute
TRT and EX

Strings
ICM, CLM, STCM Instructions
MVCL, CLCL MVCIN Instructions

Setting Addressing Mode
Addressing Mode
AMODE and RMODE
BASSM - Branch And Save And Set Mode
BSM - Branch and Set Mode

Getting your thoughts together: strategies in code design

5

C410 / 5 Days These Materials Copyright Ó 2024 by Steven H. Comstock V14.3

Fundamentals

Copy right Ó 2024 by Ste ven H. Comstock 6 Fundamentals

Section Preview

p Fundamentals

¨ Programming Concepts

¨ Source, Object, and Load Modules

¨ Memory and Data Representation

¨ Addresses

¨ The CPU

¨ Setting Up For Programming (Machine Exercise)

¨ Machine Instruction Formats

¨ Base / Displacement Addresses

¨ Assembler Language and the High Level Assembler
(HLASM)

¨ Basic Program Structure Requirements

Computer Programs

p A computer program is a series of instructions that specifies the
operations a computer should perform

p Some instructions may be used by all programs

¨ These instructions are called unprivileged, and these are the
instructions discussed in this course

7 We omit discussion of floating point and vector instructions

¨ Most application programs use only these instructions

p Some instructions may only be used by authorized programs

¨ These instructions are called privileged instructions, and they
may only be issued by programs such as the Operating System

7 There is also a category of instructions called semi-privileged,
which we lump together with the privileged instructions

¨ Application programs may request the Operating System to
issue privileged instructions through special interfaces

7 Most commonly, application programs request data transfer
between memory and external devices through interfaces with
names like READ and WRITE, GET and PUT, and so on

Copy right Ó 2024 by Ste ven H. Comstock 7 Fundamentals

Types of Operations

p Unprivileged instructions are very elementary and can be grouped
into only a few types of operations. The most common types of
operations are

¨ Arithmetic (add, subtract, multiply, divide)

¨ Transformation (move, manipulate, change)

¨ Comparison (compare, test)

¨ Order changing (change the sequence of instruction execution)

Copy right Ó 2024 by Ste ven H. Comstock 8 Fundamentals

Instruction Execution

p The instructions in a computer program are normally executed in a
sequential manner, from first to last:

.

.

.
add
add
multiply
move
subtract
.
.
.

p So the order in which you code (write) the instructions is the order
in which they will execute

Copy right Ó 2024 by Ste ven H. Comstock 9 Fundamentals

Branching

p An order changing instruction (usually called a "Branch" in
Assembler and "Go To" or "Jump" in other languages) tells the
computer to proceed to an instruction not in the normal sequence

p This enables the computer to repeat a set of instructions as often as
necessary:

.

.

.
add

instruction_200 add
multiply
move
subtract
.
.
.
subtract
branch to instruction_200

p This structure is called a loop

Copy right Ó 2024 by Ste ven H. Comstock 10 Fundamentals

Conditional Branching

p Combining a compare or test instruction with an instruction that
branches or not depending on the result of the compare or test, we
can tell the computer to execute various sets of instructions under
different situations:

add
instruction_60 move

add
.
.
.
compare data1, data2
branch-if-equal to instruction_60
subtract
multiply
subtract
compare data3, data4
branch-if-high to instruction_3000
branch-if-low to instruction_2000
move
move
add
.
.
.

p On a conditional branch, if the branch is not taken, execution
continues normally, to the next sequential instruction (nsi)

Copy right Ó 2024 by Ste ven H. Comstock 11 Fundamentals

Modules

p A computer program is written in a particular programming language
- Assembler language in this course

p Code the program following the rules for the language, and then key
the program into the system

¨ This initial format is called a source module

¨ Source modules are not executable by the computer

p Feed the source program into an IBM-supplied program called the
Assembler

¨ The Assembler reads source code and converts it to a
machine-readable format called an object program or object
module

¨ Object modules are not executable by the computer

p Feed one or more object modules into an IBM-supplied program
called the Linkage Editor

¨ The Linkage Editor produces an executable, machine readable
format called a load module

¨ Load modules are stored in libraries, ready to run whenever they
are invoked

¨ Most recently, the Linkage Editor has been replaced by a
program called the Program Binder, which serves the same role
but can produce load modules or program objects (a specially
formatted version of load modules)

Copy right Ó 2024 by Ste ven H. Comstock 12 Fundamentals

Module Translations

p In this class, we concentrate on writing source code; procedures to
do the necessary Assembles, Link Edits, and runs will be provided
to you

Copy right Ó 2024 by Ste ven H. Comstock 13 Fundamentals

Assembler

Linkage Editor
or

Program Binder

Source Module

Load Module or Program Object
(ready to run)

Object Module

Source Instruction Format

p An imperative instruction in Assembler source format has three
components to it:

label

¨ Optional; only needed if an instruction is to be referenced by a
branch instruction

operation

¨ A word, abbreviation, or mnemonic that describes the actual
operation the computer is to perform (for example: add, move)

operands

¨ A description that identifies where the data to be operated on is
located; for a branch instruction, this is the label of the
instruction to be branched to

¨ Most instructions require two operands; the result of arithmetic
and transformation instructions generally replaces one of the
operands (usually the first)

7 For example,

 ADD FLDA,FLDB

would add the contents of FLDA and FLDB and place the sum
into FLDA

¨ To talk about operands, we need to talk about data
representation, memory organization, and addressing ...

Copy right Ó 2024 by Ste ven H. Comstock 14 Fundamentals

Computer Memory

Is a string of Bits (Binary digits: objects which can only have a value of 0 or 1)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...

p Organized into bytes of 8 bits each

|xxxx xxxx|xxxx xxxx|xxxx xxxx| ...

Data and programs are represented in memory as strings of bits

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

1
5

M
e

m
o

ry

Data Representation

p Different types of data are represented in different ways

p Primary data types:

¨ Character string

¨ Packed decimal

¨ Binary integer

¨ Floating point (Short, long, extended formats)

¨ Instructions

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

1
6

M
e

m
o

ry

Character String Data

p Character string data is concerned with representing the characters used in a natural language
internally in computer memory

7 Basically, the question is, how to represent the data from a keyboard in bit patterns

p This is done by what is called a "coding scheme": each character you want to represent is
assigned a particular pattern of bits

7 S/370 family machines use a coding scheme called "EBCDIC"
(Extended Binary Coded Decimal Interchange Code)

p Some sample EBCDIC character coding assignments:

Character Assigned to bit pattern

 '+' 01001110

 'a' 10000001

 ' ' 01000000 (Space, or Blank)

 'B' 11000010

 '4' 11110100

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

1
7

M
e

m
o

ry

Character String Data, 2

p Note that not every possible bit pattern in 8 bits is assigned to a printable character

¨ For example:

00000000
00111101
10000000
11011010

p We talk about character string data because the hardware does not have any predetermined
length or maximum size for this kind of data:

7 You can string characters together as long as you like

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

1
8

M
e

m
o

ry

HEXADECIMAL

p Because binary is difficult to read and write

p And because not all bit patterns represent printable characters

p We usually use Hexadecimal to represent the contents of memory

¨ A short-hand: one hex digit for each four bits (half-byte or nybble)

BINARY: 0011 1101 0100 1110 1000 0001 0100 0000 1100 0010 1111 0100

HEX A DEC I MAL: 3 | D 4 | E 8 | 1 4 | 0 C | 2 F | 4

CHARACTER: + a B 4

not a printable standard
character blank

HEXADECIMAL is number base 16 (HEX + DECIMAL = 6 + 10)

HEX BIN DEC
 0 0000 0
 1 0001 1
 2 0010 2
 3 0011 3
 4 0100 4
 5 0101 5
 6 0110 6
 7 0111 7
 8 1000 8
 9 1001 9
 A 1010 10
 B 1011 11
 C 1100 12
 D 1101 13
 E 1110 14
 F 1111 15

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

1
9

H
e

x a
 d

e
c
 i m

a
l N

u
m

b
e

rs

A CPU and Memory (Main Storage)C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
0

C
P

U

Before a program can be executed (run), it must reside in
memory, so the CPU can access the instructions

Sometimes memory is called main storage

The heart of any computer is the Central Processing Unit (CPU)

The CPU is the component that actually fetches and executes the
instructions in a program

Sometimes a CPU is simply called a processor

Since unprivileged instructions may only access data in memory, these instructions must
specify, as their operands, locations in memory: the instructions point to the data

Memory Addressing

p Each byte of memory is numbered:

 0 1 2 3 4 5 6 7 8 9 10 ...

p The number which uniquely locates each byte of memory is called its address

¨ To reference the data at a memory location in an instruction, you specify (in the
instruction) the byte number, or address, of that memory location

¨ The CPU will then fetch the data at that location for processing, or use that location as the
target location for storing the result of an instruction

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
1

A
d

d
re

s
s
in

g

Address Registers

p Instructions and data, then, are located in memory by their addresses

p The CPU contains several address registers it uses to hold memory addresses (point to
locations in memory)

¨ A register is a small scratch pad of memory in the CPU itself, often used for holding addresses
or data, and for doing calculations

7 Think of the display on a calculator:

¨ Address registers are 32 bits long, but addresses are either 24 bits long or 31 bits long,
depending on the addressing mode currently being used by the CPU

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
2

A
d

d
re

s
s
in

g

24-Bit Memory Addresses

p Here are some sample addresses when the CPU is using 24-bit addressing mode

Decimal Hex Binary

0 000000 0000 0000 0000 0000 0000 0000
1 000001 0000 0000 0000 0000 0000 0001
2 000002 0000 0000 0000 0000 0000 0010
3 000003 0000 0000 0000 0000 0000 0011

512 000200 0000 0000 0000 0010 0000 0000

1024 000400 0000 0000 0000 0100 0000 0000

2048 000800 0000 0000 0000 1000 0000 0000

4096 001000 0000 0000 0001 0000 0000 0000

8192 002000 0000 0000 0010 0000 0000 0000

1048576 100000 0001 0000 0000 0000 0000 0000

2097152 200000 0010 0000 0000 0000 0000 0000

16777213 FFFFFD 1111 1111 1111 1111 1111 1101
16777214 FFFFFE 1111 1111 1111 1111 1111 1110
16777215 FFFFFF 1111 1111 1111 1111 1111 1111

p Each address can fit in three bytes; in 24-bit addressing mode, the leftmost byte in an address
register is ignored

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
3

A
d

d
re

s
s
in

g

31-Bit Memory Addresses

p Here are some sample addresses when the CPU is using 31-bit addressing mode

Decimal Hex Binary
0 00000000 x000 0000 0000 0000 0000 0000 0000 0000
1 00000001 x000 0000 0000 0000 0000 0000 0000 0001
2 00000002 x000 0000 0000 0000 0000 0000 0000 0010
3 00000003 x000 0000 0000 0000 0000 0000 0000 0011

4096 00001000 x000 0000 0000 0000 0001 0000 0000 0000

8192 00002000 x000 0000 0000 0000 0010 0000 0000 0000

1048576 00100000 x000 0000 0001 0000 0000 0000 0000 0000

2097152 00200000 x000 0000 0010 0000 0000 0000 0000 0000

16777215 00FFFFFF x000 0000 1111 1111 1111 1111 1111 1111

67108863 03FFFFFF x000 0011 1111 1111 1111 1111 1111 1111

1073741823 3FFFFFFF x011 1111 1111 1111 1111 1111 1111 1111

2147483647 7FFFFFFF x111 1111 1111 1111 1111 1111 1111 1111

p In 31-bit addressing mode, the leftmost bit in an address register is ignored

¨ The leading "x" indicates the bit is ignored for address calculations

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
4

A
d

d
re

s
s
in

g

CPU, Registers, and Main StorageC
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
5

A
d

d
re

s
s
in

g

flags cc IAR

 Current
Instruction

PSW A-Reg B-Reg

TOD Clock Clock Comparator

ü
ý GPR's
þ

0 1 2 3 4 5 6 7

FEDCBA98

Copy right ã 2024 by Ste ven H. Comstock 26 CPU Contents

Central Processing Unit (CPU)

CPU Contents

16 General Purpose Registers (GPRs)
+ Four bytes each, numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
+ Used to hold addresses, integers, any data
+ Decimal range 0 to 4,294,967,295 if treated as unsigned binary integer
+ Decimal range -2,147,483,648 to +2,147,483,647 as signed integer

16 Floating Point Registers (not shown)
+ Eight bytes each, work with data in "excess-64 floating point" (S/360)

format or in "binary floating point" (IEEE) format

16 Control Registers (not shown)
+ Four bytes each; each register serves some pre-defined purpose

16 Access Registers (not shown)
+ Four bytes each; used to access multiple address / data spaces

Flags: Status Information
+ Supervisor / Problem state
+ Wait / Executing state
+ ... other control states ...
Flags: Storage Protect Key
+ Controls fetch / store access to parts of memory
Condition Code
+ 2 bits, set when some instructions are executed, to indicate

result of operation
Addressing Mode Indicator
+ 1 bit, indicates if 24-bit mode (bit is 0) or 31-bit mode (bit is 1)
Instruction Address Register (IAR)
+ Memory address of next instruction to be executed

Program Status Word

 (PSW)

Copy right ã 2024 by Ste ven H. Comstock 27 CPU Contents

Central Processing Unit (CPU), continued

Other Components
+ Instruction Fetch / Decode Logic and registers

Get the current instruction, point to the next instruction,
determine instruction type of the current instruction

+ Address Calculation Logic and registers (A-Reg and B-Reg)
Compute the address of operands in memory, if needed

+ Instruction Execution Logic
Perform the instruction

+ Interruption Handling Circuitry
Save status when an interrupt occurs, branch to

interrupt handling routine

+ Clock and Timers (TOD Clock, Clock Comparator, CPU Timer)
For determining current date / time, allowing time intervals

to elapse, etc.

+ Vector facility (optional)
Includes registers and instructions to perform operations on

arrays of data simultaneously

+ Cryptographic facility (optional)
Provides encoding and decoding services

Notes

¨ The S/390 floating point registers are designated 0, 2, 4, and 6

¨ Newer machines have 16 floating point registers; also, the
registers can work with data in traditional IBM floating point
format (also called "hexadecimal floating point") or IEEE floating
point format (also called "binary floating point")

Copy right ã 2024 by Ste ven H. Comstock 28 CPU Contents

Central Processing Unit (CPU), continued

p Over time, what was originally the IBM S/360 has gone through many
enhancements and changes to get to the point it is now at

7 For example, IBM mainframes did not always have Vector facilities
or Cryptographic facilities

¨ Although the core design has remained, new capabilities and new
instructions have been added

p This course covers the original instruction set and instructions that
were introduced in the first 20 years of the product line (roughly
1963~1981)

7 Probably 90% of Assembler applications are written using only
these instructions

¨ And developers are loathe to use instructions that might not be
present on a machine when a customer installs their product

p In addition, the Assembler itself has gone through extensive
improvements, especially recently

¨ We will use many of these improvements, since the Assembly
process isn't limited by the target machine hardware

¨ If you have to maintain older code, it was obviously developed
using the earlier Assemblers and so couldn't take advantage of
the new features

Copy right ã 2024 by Ste ven H. Comstock 29 CPU Contents

Computer Exercise: Setting Up For Programming

At this point, we'll take a little break from lecture to prepare for our later labs.

Using ISPF option 6, enter the following command

===> exec '__________.train.library(c410strt)' exec

and press <Enter>

This will cause the setup process to run. You will be prompted for a high level
qualifier for your data sets. Unless the instructor tells you otherwise, use your
TSO userid (the process is set up to use this as a default anyway). Press
<Enter>.

The setup process will create three libraries for you, one to hold your source
code, one to hold your JCL, and one to hold load modules you will be creating
throughout the class.

The library names are <hlq>.TR.SOURCE, <hlq>.TR.CNTL, and
<hlq>.TR.LOAD, where "<hlq>" is replaced by the high level qualifier you
entered in response to the setup's prompt.

Copy right ã 2024 by Ste ven H. Comstock 30 Fundamentals

Machine Instruction Formats

Fundamentals

p The CPU expects to find instructions represented in a binary form:
the CPU does not recognize the word "ADD", for example, but it
recognizes a binary operation code that means "ADD" to it

p For those instructions where both operands are in memory, the
machine format expected by IBM mainframe computers is like this:

Operation Data 1st Operand 2nd Operand
 Code Length Address Address

Copy right ã 2024 by Ste ven H. Comstock 31 Fundamentals

Operand Addresses

p Machine instructions do not contain operand addresses as 24-bit or
31-bit memory addresses

¨ The reason for this is that a program may be loaded into any
consecutive range of memory addresses when it is to be run
(executed)

¨ If operand addresses were stored as absolute memory locations,
you would need to re-Assemble a program every time it was to
execute from a different place in memory

p Instead, every program is expected to establish a Base Address
(starting address) in memory, and the location of operands is
specified by how many bytes away the operand is from this base
address

¨ This distance is called the Displacement

p Every time a program is loaded into memory, it finds out the address
it is loaded at and uses that value for the Base Address, and
operands are located relative to this starting point

¨ A machine instruction is used to place a memory address into a
General Purpose Register (GPR)

¨ This is how a program establishes its Base Address

Copy right ã 2024 by Ste ven H. Comstock 32 Fundamentals

Base / Displacement

p This way, no matter what address in memory a program is loaded at,
once you get that load address into a General Purpose Register, you
locate data items (or instructions) by specifying

¨ you are using that particular GPR as a Base Register

¨ and how many bytes of displacement should be used to calculate
the correct address for the data:

Base Register

 xx xx xx xx

 data-item-1 data-item-2

 ----- Displacement D1 ----->

 -------------------------Displacement D2 ----------------->

Program Load Address

Operand Address= Contents of Base Register + Displacement

= C(Base Reg) + Displacement

Memory

Copy right ã 2024 by Ste ven H. Comstock 33 Fundamentals

Operand Addresses, 2

p So, in a machine instruction that references a memory address, the
address is actually stored in Base / Displacement form, in two bytes:

¨ The first half-byte identifies which General Purpose Register is
being used as a Base Register (a hexadecimal digit 0-9 or A-F)

7 NOTE: if register 0 is used, a value of zero is used for the base,
not the contents of register 0

¨ The last three hex digits (one and a half bytes) specifies the
displacement to be used in locating the data item

 B D D D
 1 Byte 1 Byte

p The range of values for the displacement is:

 000 - FFF in hexadecimal

or 0000 - 4095 in decimal

¨ In other words, a single base register can support a program up
to 4096 bytes (4K) long

¨ Larger programs require using two (or more) different GPRs for
base registers (discussed later), or breaking the program up into
subroutines (not discussed in this course)

Copy right ã 2024 by Ste ven H. Comstock 34 Fundamentals

Machine Language

p The CPU only understands instructions expressed in binary (or, of
course, hex) in the form we've been looking at:

¨ operation code / data length / base-displacement memory
addresses

¨ This is called "machine language"

p In some instructions, one or more operands may be in registers, or
even included in the instruction itself

p Machine instructions in the S/390 are either two bytes, four bytes, or
six bytes long, depending on the instruction and where the operands
are located

¨ Instructions with operands in registers, for example, do not need
to contain memory addresses or data lengths

p Fortunately, we do not have to code in machine language to write
Assembler Language programs (although it is sometimes useful to
know how to interpret machine instructions in a memory dump)

Copy right ã 2024 by Ste ven H. Comstock 35 Fundamentals

Assembler Language

p Assembler Language is a computer programming language designed
to allow the programmer to specify a series of machine instructions

p This language has its own vocabulary, grammar, and rules of syntax

p Assembler Language simplifies coding machine instructions by:

¨ Allowing the use of mnemonics to specify an instruction, instead
of the hexadecimal or binary machine language representation

7 for example: write "MVC" for "move characters" instead of a
hexadecimal "D2"

¨ Allowing the use of symbols (names, labels) instead of forcing us
to keep track of base and displacements

7 the Assembler will determine the correct base and displacement
values, based upon information we supply

Copy right ã 2024 by Ste ven H. Comstock 36 Fundamentals

The Assembler

p The Assembler is a program already in executable form that converts
our Assembler Language programs into actual machine code

¨ This course is based on the most recent version of the High Level
Assembler (HLASM)

7 Pointing out differences from earlier versions of Assemblers where
relevant

p The Assembler works with three kinds of statements:

¨ Machine Instructions: mnemonic representations of the machine
instructions we want our program to contain

7 Machine Instructions are converted one for one into actual
machine instructions in binary format

¨ Assembler Instructions: that tell the Assembler to do something
(allow room for data, start a new page on the listing, use a
particular register for a base, and so on)

7 Sometimes Assembler Instructions result in object code being
generated, but often these instructions simply give the Assembler
information

¨ Macro Instructions: IBM- (or user-) defined instructions; the
definitions, in turn, are composed of Machine, Assembler, and
other Macro Instructions

Copy right ã 2024 by Ste ven H. Comstock 37 Fundamentals

Program Development

p We use the following process when writing Assembler Language
programs:

¨ Code the program in Assembler Language, using a text editor
such as the ISPF/PDF editor

¨ Submit a job that invokes the Assembler to convert our source
code into object code and then invokes the Linkage Editor to
convert our object code into executable format (a load module)

7 This job can also test the resulting program (our approach in this
class), or you can set up a separate job to test the program

Copy right ã 2024 by Ste ven H. Comstock 38 Fundamentals

Assembler Rules and Conventions

Names (instruction labels and data labels)

¨ 1-63 characters from A-Z, 0-9, $, #, @, _ (underscore)

7 Lower case alpha (a-z) are supported as equivalent to upper case
alpha

7 First character must not be numeric

7 Names must be unique within a program

7 Earlier assemblers only supported upper case names with a
maximum of eight characters, and no underscores

Coding Rules (columns 1 -71)

¨ Name, if present, begins in column 1

7 Followed by one or more blanks

¨ Operation Code (Machine, Assembler, or macro instruction)

7 Followed by one or more blanks

¨ Zero or more operands

7 If multiple operands, separated by commas, no extra spaces

7 Followed by one or more blanks

¨ Remarks (optional)

Comment lines are coded with an asterisk (*) in column 1

Blank lines are allowed (not so in older Assemblers)

Copy right ã 2024 by Ste ven H. Comstock 39 Fundamentals

Control Sections

p Programs are organized into "chunks" of code (instructions and / or
data areas called Control Sections, or CSECTs)

p The beginning of a CSECT is indicated by the appearance of either a
START or CSECT Assembler instruction:

csectname START value

or

csectname CSECT

Notes

¨ The "csectname" must follow the rules for names in Assembler,
with the restriction that it may only be 8 characters long,
maximum

¨ There may only be one START statement in a program; there may
be any number of CSECT statements (although in this course we
will normally have only one CSECT per program)

¨ "value" specifies a starting value for the Assembler's location
counter (default: 0) in decimal or hex

¨ Each time a new CSECT statement is encountered, the Assembler
sets that control sections's location counter to 0 (zero)

Assembler
Instructions

Copy right ã 2024 by Ste ven H. Comstock 40 Fundamentals

The Location Counter

p As the assembler processes your source code, generating machine
format instructions, it maintains an internal counter called the
"location counter" that contains the number of bytes of storage
assembled in the current CSECT so far

p The location counter starts out at zero for each CSECT, and as each
instruction is assembled, the location counter is incremented by the
size of the resulting machine instruction

p The location counter is used only during the Assembly process

p You can reference the location counter in an instruction operand by
coding an asterisk (*)

¨ The value is the address of the first byte of the instruction
containing the reference

¨ More on this later

Copy right ã 2024 by Ste ven H. Comstock 41 Fundamentals

Location Counter Example

Location Source (storage size,
Counter Instruction in bytes)

000000 MYPROG CSECT ---
000000 STM 14,12,12(13) (4)
000004 LR 12,15 (2)
000006 USING MYPROG,12 ---
000006 ST 13,SAVE+4 (4)
00000A LA 13,SAVE (4)
00000E ...

¨ "---" indicates an instruction does not generate any space in the
object module

p So we see that the CSECT instruction just indicates the beginning of
the control section and then,

¨ the STM instruction is at location 0 in the object module

¨ the LR instruction is at location 4 in the object module

¨ the USING instruction is an Assembler instruction that does not
take up any space in the object module

¨ the ST instruction begins at location 6

¨ the LA instruction begins at location 10 (decimal; 'A' in
hexadecimal)

¨ and so on ...

Copy right ã 2024 by Ste ven H. Comstock 42 Fundamentals

END

p A control section begins with a START or CSECT statement and
continues until ...

¨ A new CSECT is begun

¨ Or a DSECT is encountered

¨ Or an END statement is encountered:

 END [starting-location]

Notes

¨ The END statement must be the last statement in your program: it
denotes the end of the source module and any statements
following it are discarded

¨ "starting-location" represents where in the program execution
should begin when the program is actually run (the Entry Point)

7 The brackets ([]) around "starting-location" are typical IBM syntax
style, indicating an operand is optional (you never key in the
brackets)

7 The default "starting-location" is the first byte of the program

Assembler
Instruction

Copy right ã 2024 by Ste ven H. Comstock 43 Fundamentals

Program Structure, I

p So, the basic structure of Assembler programs is as follows:

MYPROG CSECT
 |
. |
 |
. the actual source code
 |
. |
 |
 END MYPROG

¨ In this example, "MYPROG" is the CSECT name (this is chosen by
the programmer, or by a standards convention in some
installations)

¨ Usually, this is also the name of the source library member that
contains the program as well as the name of the load library
member that contains the resulting load module

7 Although these conventions do not have to be followed, and in
some cases they can't be followed, we shall follow them in this
class

7 Thus, in the example above, you would edit member MYPROG in
your source library, typing in the lines above

Copy right ã 2024 by Ste ven H. Comstock 44 Fundamentals

Saving Registers

p In OS/390 and z/OS, every Assembler program must first save the
current General Purpose Register values into a save area provided by
the operating system

¨ This is because every program needs to use the GPRs, so a
convention has been established for saving and restoring register
values:

7 Every program will provide a save area for the registers, and the
address of this save area is placed into register 13

7 When a program invokes another program, the invoked program
will save the register values as received from the invoking
program in the invoking program's save area

â The invoked program will then provide its own save area so
that if it invokes another program that program will have a
place to save the register values

â This save area will be pointed at by register 13

â When a program returns to the program that invoked it, it must
first restore the registers as they existed on entry, so the
invoking program is guaranteed its register values are the
same as when it invoked the lower level program

¨ We discuss this in detail later, for now accept that our program
must first issue the machine instruction:

 STM 14,12,12(13)

Copy right ã 2024 by Ste ven H. Comstock 45 Fundamentals

Addressability

p The next thing to do in an assembler program is to establish
"addressability"; this requires two instructions:

¨ A machine instruction that will load a memory address into a
general purpose register; this establishes the base address

¨ An assembler instruction that will inform the Assembler that this
is the register that should be used as the base register for the
program, and from what point displacements should be calculated

7 Note that it is your responsibility, as the programmer, to make
sure the value in your base register is not "clobbered" by any
code you write later in the program

p Almost any GPR may be used, but a common convention (and one we
will follow in this class) is to use GPR 12 for the first base register for
a program

Copy right ã 2024 by Ste ven H. Comstock 46 Fundamentals

Addressability, Continued

p Several machine instructions exist for getting a memory address into
a register, but for now we shall use this one:

 LR 12,15

¨ This will place into register 12 the contents of register 15

¨ This takes advantage of the fact that in OS/390 and z/OS when a
program is invoked, the address the program has been loaded at
is placed into register 15 before passing control to the program

p To tell the Assembler how to calculate displacements, code:

 USING MYPROG,12

¨ This Assembler instruction says: use register 12 as the base
register, and calculate displacements from the beginning of the
CSECT named MYPROG

Copy right ã 2024 by Ste ven H. Comstock 47 Fundamentals

Providing a Save Area

p Following the convention mentioned earlier, the next thing an
Assembler program must do is to save the pointer to the save area
provided by the invoking program (the operating system in this case):

 ST 13,SAVE+4

p Then, the address of this program's save area must be placed into
register 13:

 LA 13,SAVE

p Now the Assembler program has completed following standard
"linkage conventions" for the OS/390 and z/OS environments

p But the program needs to contain a definition for the label "SAVE"
referenced in the two instructions above

¨ This is done by coding:

SAVE DC 18F'0'

¨ This Assembler instruction reserves memory for the save area

¨ 18 fullwords, or 72 bytes

¨ The instruction may be placed almost anywhere in the program,
but it is generally placed near the end of the program

Copy right ã 2024 by Ste ven H. Comstock 48 Fundamentals

Program Structure, II

p So, the basic structure of an Assembler program in the OS/390 and
z/OS environments, as far as we know now, looks like this:

MYPROG CSECT
 STM 14,12,12(13)
 LR 12,15
 USING MYPROG,12
 ST 13,SAVE+4
 LA 13,SAVE
. code the actual work beginning here
 |
. |
 |
. |
SAVE DC 18F'0'
 END MYPROG

p The only thing remaining for a general structure is: how to terminate
an Assembler program

Copy right ã 2024 by Ste ven H. Comstock 49 Fundamentals

Terminating An Assembler Program

p When a program has run to completion, it must perform three final
tasks:

¨ Restore the registers to their state before the program was run by
issuing these machine instructions

 L 13,SAVE+4
 LM 14,12,12(13)

¨ Place a return value in register 15 (the program that invoked this
program can thus get some feedback about how things went);
typically, a return code of zero is passed back by:

 SR 15,15

¨ And then return to the invoking program

 BR 14

7 Another OS/390 and z/OS convention: when a program is
invoked, register 14 contains the address to return to

7 This machine instruction branches to the address in register 14

p This completes the basic structure or "skeleton" of an Assembler
program designed to run in the OS/390 or z/OS environments

p The result of this structure is shown on the following page ...

Copy right ã 2024 by Ste ven H. Comstock 50 Fundamentals

Program Structure, III

p So this is the basic structure of an Assembler program in the OS/390
and z/OS environments:

MYPROG CSECT
 STM 14,12,12(13)
 LR 12,15
 USING MYPROG,12
 ST 13,SAVE+4
 LA 13,SAVE
 .
 .
 .
 L 13,SAVE+4
 LM 14,12,12(13)
 SR 15,15
 BR 14
SAVE DC 18F'0'
 END MYPROG

p We will discuss all these conventions and instructions in greater
detail during the course

¨ This provides you with the minimum amount of information to
code the initialization and termination routines in an Assembler
program

p One last thought along these lines: it would be a good idea to
comment the code, in order to simplify maintenance later ...

Copy right ã 2024 by Ste ven H. Comstock 51 Fundamentals

Program Structure, IV

p Commenting the code may be done in a variety of styles

¨ This is pretty basic

7 You may prefer your own style

7 Or your installation may have specific standards on comments

MYPROG CSECT
 STM 14,12,12(13) SAVE REGISTERS
 LR 12,15 ESTABLISH
 USING MYPROG,12 ADDRESSABILITY
* SAVE POINTER TO CALLING PROGRAMS REGISTERS
 ST 13,SAVE+4
* POINT TO OWN SAVE AREA
 LA 13,SAVE
**
 .
 .
 .
**
* PICK UP ADDRESS OF CALLING PROGRAMS SAVE AREA
 L 13,SAVE+4
 LM 14,12,12(13) RESTORE REGISTERS
 SR 15,15 RETURN CODE = 0
 BR 14 RETURN TO SYSTEM
**
*
* CONSTANTS AND DATA AREAS
*

SAVE DC 18F'0'
 END MYPROG

Copy right ã 2024 by Ste ven H. Comstock 52 Fundamentals

Program Structure, V

p Finally, a word about capitalization

¨ Labels, instructions, and operands may be coded in mixed case

¨ Remarks and comment lines may contain any EBCDIC character

¨ So comments might show up better if coded in upper and lower
case:

MYPROG CSECT
 STM 14,12,12(13) Save registers
 LR 12,15 Establish
 USING MYPROG,12 addressability
* Save pointer to calling programs registers
 ST 13,SAVE+4
* Point to own save area
 LA 13,SAVE
**
 .
 .
 .
**
* Pick up address of calling programs save area
 L 13,SAVE+4
 LM 14,12,12(13) Restore registers
 SR 15,15 Return code = 0
 BR 14 Return to system
**
*
* Constants and data areas
*

SAVE DC 18F'0'
 END MYPROG

Copy right ã 2024 by Ste ven H. Comstock 53 Fundamentals

Computer Exercise: Coding, Assembling, Linking, Running

Now you are ready to code a simple Assembler program. Really simple.

1. Code a program called ASMEX1. This program simply enters and
returns, and is based on the code on pages 50 to 52 (without the ellipsis
(three dots) of course).

Code this program as a member in your TR.SOURCE library.

2. To Assemble, link, and run this program, use the procedure called
ASM1RUN1 in your TR.CNTL library. This JCL will work for
most of the remaining exercises, with only minor modifications.

This program will not produce any output yet, although you will get listings
from the Assembler and the Program Binder.

The purpose of this exercise is to get the basic logistics of coding,
assembling, linking and running programs for the class environment taken
care of. Also, you will now have a prototype program that follows basic linkage
conventions as a model for future programs.

