
Structured COBOL Workshop for Enterprise COBOL

Structured COBOL Workshop for Enterprise COBOL - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code and test programs using the "IBM Enterprise COBOL for z/OS"
compiler to process sequential files

2. Describe fields, records, and files to COBOL

3. Correctly use the most common COBOL verbs in their various forms

4. Use the following techniques in designing or coding COBOL programs:

Data editing, including use of multiple currency symbols and the Euro
Loop control and switch setting and testing
Move mode and locate mode processing
Pseudocoding as a design tool
Reference modification
Some intrinsic functions
The COBOL COPY statement

5. Code COBOL programs using installation standards, with an awareness of
the ANSI standard

6. Define numeric data items to COBOL that are packed decimal or binary
integer in format

7. Use the COBOL arithmetic verbs ADD, SUBTRACT, MULTIPLY, DIVIDE, and
COMPUTE

8. Code and test COBOL programs to create reports, including page break
processing and control breaks.

9. Code and test COBOL programs to perform batch transaction processing
using match-merge logic (sequential processing of transaction and master
files), including update in place for sequential disk files

10. Use the following techniques in designing or coding COBOL programs:

Top down development
Structured programming
Pseudocoding as a design tool
Modular design

11. Code COBOL programs that read from and write to zFS files on systems
using z/OS UNIX.

1

D715 / 5 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.8

Structured COBOL Workshop for Enterprise COBOL - Topical Outline

Day One

Fundamentals
Hardware and Software
Instructions and Programs
Compiling and Binding
COBOL Basics
Computer Exercise: Starting a COBOL Program 40

Describing Data
Concepts
Records and Files
Fields
Structures
Introduction to PICTURE
Working-Storage
Tips in Defining Data
Computer Exercise: Defining Working-Storage 79

Processing Data
File Handling
Record Building
Loop Control
The PROCEDURE Division
Qualification of names
OPEN, READ, WRITE, CLOSE
Control Flow: GO TO, EXIT PROGRAM, STOP RUN, GOBACK
Data Manipulation
MOVE and MOVE CORRESPONDING
Program Building Strategy
Computer Exercise: A Complete COBOL Program 107

I/O Processing Options
Buffers
Move Mode and Locate Mode Processing
End of File Processing
Data Element Naming
Computer Exercise: Variations on a Theme127

2

D715 / 5 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.8

Structured COBOL Workshop for Enterprise COBOL - Topical Outline, p.2.

Day Two

More on Data Items
Figurative Constants
Data Editing
Computer Exercise: Editing Data .. 139

PERFORM Statements
Un-structured Programming
Alternatives to "GO TO"
Perform Procedure
Perform ... Thru
Perform Until
Computer Exercise: Using Perform .. 159

Program Design
Program Execution Principles
Program Design Paradigms and Techniques
Pseudocode
Computer Exercise: Using Pseudocode ... 179

Conditional Statements
More PERFORM statements
Conditions and Conditional Expressions
IF / [THEN] / ELSE
Scope Terminators
CONTINUE
In-Line PERFORM
SET ... TO TRUE
Computer Exercise: Conditional Statements 211

Day Three

Describing Numeric Data
USAGE Clause
Display data
Packed decimal data
Binary integer data
Computer Exercise: Creating Numeric Fields 241

3

D715 / 5 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.8

Structured COBOL Workshop for Enterprise COBOL - Topical Outline, p.3.

Day Three, continued

Data Alignment
Slack Bytes and Sync
Numeric Data Transmission Considerations
Computer Exercise: Ensuring Proper Alignment 253

Arithmetic Instructions
ADD, SUBTRACT, MULTIPLY, DIVIDE
Rounding
Arithmetic expressions
COMPUTE
Planning calculation results
SIZE ERROR Condition
Computer Exercise: Using Arithmetic Verbs 284

EVALUATE

Syntax
EVALUATE and conditions
EVALUATE with ANY and ALSO
EVALUATE and truth tables
Points and Tips
Computer Exercise: Using EVALUATE .. 301

Day Four

Basic String Manipulation
INITIALIZE, ACCEPT / DISPLAY
Conceptual Data Items (DATE [YYYYMMDD], DAY [YYYYDDD],
DAY-OF-WEEK, TIME)
Reference Modification
Hex Notation
Computer Exercise: DATE, TIME, and DISPLAY 317

4

D715 / 5 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.8

Structured COBOL Workshop for Enterprise COBOL - Topical Outline, p.4.

Introduction to Intrinsic Functions
Concepts and Syntax
Lists of Intrinsic Functions
Date and Time Related Functions
String Related Functions
Arithmetic, Business, and Mathematical Functions
Computer Exercise: Using Functions .. 352

Working With Print Files
Carriage Control
Report Dates
Report Components
Line Counting
Page Break Logic
Report Break Logic
Report Design Pseudocode
Computer Exercise: Report Creation .. 382

Day Five

Control Breaks
Concepts
Break Processing
Control Break Pseudocode
Computer Exercise: Two-level Control Break Program 407

Match Merge Logic
Update in Place (REWRITE)
Match Merge Concepts
Match Merge Pseudocode
Computer Exercise: Match Merge .. 443

Miscellaneous Topics
File Status
Coding Styles
REDEFINES and RENAMES
User-defined Classes
The COPY Statement
Advanced Currency capabilities
Line sequential files

5

D715 / 5 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.8

A Summary of COBOL Releases

ISO/ANSI
Compiler(s) standards End of Support

OS/VS COBOL 68 / 74 June 1994

VS COBOL II - R1, R2 74 June 1996

VS COBOL II - R3, R4 74 / 85 March 2001

COBOL/370 (V1R1) 74 / 85+89 September 1997
COBOL for VSE/ESA

COBOL for MVS & VM (V1R2) 74 / 85+89 +OO December 2001

COBOL for OS/390 & VM (V2R1) 74 / 85+89 +OO' December 2004

COBOL for OS/390 & VM (V2R2) 74 / 85+89 +OO' December 2004

IBM Enterprise COBOL for z/OS and OS/390 (V3R1) April 2004
V2R2 + Java, Unicode, XML parse

IBM Enterprise COBOL for z/OS and OS/390 (V3R2) October 2005
V3R1 + enhanced OO capabilities

IBM Enterprise COBOL for z/OS (V3R3) April 2007
V3R2 + XML generate

IBM Enterprise COBOL for z/OS (V3R4) April 2015
V3R3 + Larger element size
+ Unicode support stage 2

IBM Enterprise COBOL for z/OS (V4R1) April 2014
V3R4 + enhanced XML support
+ compiler parms in file

IBM Enterprise COBOL for z/OS (V4R2) April 2022
V4R1 + underscore in names
+ XML PARSE with validation

IBM Enterprise COBOL for z/OS (V5.1) April 2020
02 improved Java & C interoperability

XML and Web services

IBM Enterprise COBOL for z/OS (V6.1) September 2022
support 64-bit programming

IBM Enterprise COBOL for z/OS (V6.2) N/A
improvements in Java, XML, Web

IBM Enterprise COBOL for z/OS (V6.3) N/A
support for new LE features

IBM Enterprise COBOL for z/OS (V6.4) N/A
interoperability with 31-bit & 64-bit

6

D715 / 5 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.8

Fundamentals

Copyright ã 2024 by Steven H. Comstock 7 Fundamentals

Section Preview

p Fundamentals

¨ Hardware and Software

¨ Instructions and Programs

¨ Compiling and Binding

¨ COBOL Basics

7 A Sample Program

7 Character Set, Words, Punctuation

7 Program Structure

7 Identification Division

7 Environment Division

7 Data Division

¨ Starting a COBOL Program (Machine Exercise)

Computer Hardware and Software

p Computers have two broad categories of components

¨ Hardware (actual machines)

¨ Software (programs and data)

p Although details vary from machine to machine, the essential
hardware components are:

Copyright ã 2024 by Steven H. Comstock 8 Fundamentals

Data and
Instructions

Control /
Status Info.

Data

Processor
or

Central
Processing
Unit

Storage
or

Memory

Monitor /
Keyboard

Other Devices:

¨ Disks

¨ Tapes

¨ Printers

¨ Terminals

¨ etc.

The Processor

p The Central Processor (or CP, or Processor, or Central Processing
Unit, or CPU) works as follows (conceptually):

Instruction Execution

¨ Fetch current instruction from memory into CPU

¨ Update instruction pointer to next instruction in memory

¨ Fetch data item(s) referenced in instruction, from memory

¨ Execute instruction

¨ Store result(s) in memory

¨ Set hardware condition code

External Device Control

¨ Send commands to device (for example, input or output request)

7 data transferred from memory to device (output request)

7 or data transferred from device to memory (input request)

¨ Device signals processor of completion of I/O operation
(successful or failure)

¨ Processor may also query device regarding status, to check if
powered on, connected, working properly, etc.

p Notice that data flows between devices and memory and between
the CPU and memory; control flows between the CPU and devices

Copyright ã 2024 by Steven H. Comstock 9 Fundamentals

Instructions

p The CPU can only process the machine instructions it was designed
to recognize

¨ Electronic patterns that indicate the operation to be performed
(arithmetic, moving data in memory, comparing data, branching,
and so on)

¨ Instructions also indicate where the data item(s) to be operated
on are found in memory: the memory address of the item(s)

¨ Instructions need to be in memory before they can be executed

¨ The data that instructions operate on must already be in memory
at the time the instruction is executed

7 Except for input instructions, of course, since these are requests
to read data into memory from some external device

7 However, these kinds of instructions must identify where in
memory to put the data (what memory address to use)

Copyright ã 2024 by Steven H. Comstock 10 Fundamentals

Programs

p A program is a list of machine instructions the CPU is to execute to
accomplish some task

¨ Along with any necessary data embedded in the program

p Some programs are designed to help run the computer itself

¨ These belong to the operating system

p Some programs are designed to accomplish useful work, such as
updating records on external files, producing reports, or displaying
data on a terminal

¨ These are called application programs

p Some programs are designed to convert instructions keyed as
character strings into actual machine instructions

¨ These programs are called compilers

Copyright ã 2024 by Steven H. Comstock 11 Fundamentals

Programming Languages

p An unknown number of programming languages have been devised
over the years

¨ Each one trying to provide a natural style for programmers to
describe what they want the computer to do

¨ The most commonly used programming languages today (in no
particular order):

7 COBOL

7 PL/I

7 Assembler

7 JAVA

7 C

7 C++

7 FORTRAN

7 RPG

7 Pascal

7 Python

7 php

¨ Here, of course, we focus on COBOL

Copyright ã 2024 by Steven H. Comstock 12 Fundamentals

Compiling and Binding

p A compiler is a program that examines a program written in a
particular language (COBOL in our case) and converts this program
into machine instructions the CPU can understand

¨ A program typically also contains support data, such as report
headers, areas for doing calculations, and so on

p A program written in a programming language is called a source
module (or also a "source program" or just "source code")

p A compiler reads source code and produces an object module (or
“object code”, or “object program”)

¨ This is the resulting machine instructions and support data,
based on the rules of the language and the source code written
by the programmer

p An object module must be bound before it can be run

¨ Binding (or linkage editing) produces a load module (or
“executable program”, or “program object”)

¨ A load module is stored in a special format on a disk library for
fast loading into memory when the program is to be run

Copyright ã 2024 by Steven H. Comstock 13 Fundamentals

Source
Module

Load
Module

Object
Module

Compiler Binder

COBOL

COmmon Business Oriented Language

p The world's most successful, pervasive programming language

p Standards of the language are set and modified by ISO - the
International Standards Organization

¨ U.S. member of this group: American National Standards
Institute (ANSI)

p Most recent versions:

COBOL 68

COBOL 74

COBOL 85

COBOL 85 with 1989 amendment: Intrinsic Functions

COBOL 2002

COBOL 2014

p Despite efforts to create a truly "portable" language, each vendor
complies with various levels of the official standards and then adds
its own enhancements

Copyright ã 2024 by Steven H. Comstock 14 Fundamentals

Standards

p There are various sets of standards established by different
organizations to define what they consider to be "official", or
"standard" COBOL; among them:

The ISO/ANSI Standard

¨ Compilers from different vendors must be certified independently
by ISO or ANSI

FIPS (Federal Information Processing Standard)

¨ For U.S. government installations

Installation-specified coding standards

p These course materials are based on the IBM compiler called IBM
Enterprise COBOL for z/OS

¨ And any later COBOL compilers for the z/OS platform

p Discussion of variations from the official standards is marginal here

¨ We focus on the compiler as it is, not how it compares to the
standards

Copyright ã 2024 by Steven H. Comstock 15 Fundamentals

A Sample COBOL Program

Identification division.
Program-id. ISDF2F.

Environment division.
Input-output section.
File-control.
 Select INFILE assign to INDD.
 Select OUTFILE assign to OUTDD.

Data division.
File section.

FD INFILE
 Block contains 0 records.
01 INREC PICTURE X(128).

FD OUTFILE
 Block contains 0 records.
01 OUTREC PIC X(128).

Working-storage section.
01 Record-work pic x(128).

Procedure division.
Initialization section.
 Open input INFILE
 output OUTFILE.

Copyfile section.
 Read INFILE into record-work
 at end go to termination.
 Write outrec from record-work
 Go to copyfile.

Termination section.
 Close INFILE OUTFILE.
 Stop Run.

Copyright ã 2024 by Steven H. Comstock 16 Fundamentals

Components of the COBOL Language

Basic Character Set

p 52 Alphabetic characters, (A-Z, a-z), 10 Numeric digits (0-9), and 17
Special characters:

Space
. Decimal point (period)
< Less than
(Left parenthesis
+ Plus sign
$ Dollar sign
* Asterisk
) Right parenthesis
; Semicolon
: Colon
- Minus sign (hyphen)
_ Underscore (in Enterprise COBOL 4.2 or later)
/ Slash or stroke
, Comma
> Greater than
= Equals sign
" Double quote
' Single quote / apostrophe

p Older COBOL programs are mostly written in upper case letters (all
capitals)

p Newer programs tend to be written in lower case or mixed case
letters

p This is mostly a matter of style and personal preference, since the
compiler treats upper case and lower case letters the same (except
when enclosed in quotes)

Copyright ã 2024 by Steven H. Comstock 17 Fundamentals

Elementary Uses of the Character Set

Punctuation characters: Space . () ; , : '

¨ A separator is a contiguous string of one or more punctuation
characters

7 In particular, the following are designated as COBOL separators:

b Space

,b Comma

.b Period

;b Semicolon

(Left parentheses

) Right Parentheses

: Colon

"b Quote or

'b Apostrophe

== Pseudo-text delimiter

x' or x" Start hexadecimal literal

z' or z" Start null-terminated literal

n' or n" Start DBCS or national literal

g' or g" Start DBCS literal

nx' or nx" Start hexadecimal national literal

¨ Note that the x, z, n, and g characters above can be upper case
or lower case

Copyright ã 2024 by Steven H. Comstock 18 Fundamentals

Elementary Uses of the Character Set, 2

Separators, continued

¨ Quotes, apostrophes, and pseudo-text delimiters must always
occur in pairs, and the first one must be preceded by at least
one blank while the second must be followed by at least one
blank

¨ Hexadecimal literals, null-terminated literals, DBCS literals.
national literals, and national hexadecimal literals must only
contain the allowed character types and must be terminated with
a quote or apostrophe (whichever is used for the opening)

p A character string is a single character or sequence of contiguous
characters that forms a word, literal, picture character string, or
comment

7 A character string is delimited by a separator

p Note that literals and run-time data can include characters other than
the basic character set

¨ The basic character set is what is used to compose COBOL
recognized words and names

Copyright ã 2024 by Steven H. Comstock 19 Fundamentals

Elementary Uses of the Character Set, 3

COBOL words (30 characters maximum):

p User-defined words

¨ Supplied by (made up by) programmer

¨ Contains alphanumeric characters, hyphens, and underscores

¨ Hyphen may not be first or last character; underscore may not
be the first, but it may be the last

¨ Must contain at least one alpha character (except paragraph
names and section names)

¨ Must not be COBOL reserved word

p System names (e.g.: IBM-370, SYSIN)

p Function names (e.g.: CURRENT-DATE)

p Reserved words

¨ Key Words (ADD, READ, WRITE, ...)

¨ Optional Words (IS, ARE, ...)

¨ Special Registers (LINAGE-COUNTER, TALLY, ...)

¨ Special Character Words (+ - / * ** < > = <= >=)

¨ Figurative Constants (ZERO, SPACES, ...)

¨ Special Object Identifiers (SELF, SUPER)

Copyright ã 2024 by Steven H. Comstock 20 Fundamentals

Elementary Uses of the Character Set, 4

Literals

p Numeric: 0-9,+,-, decimal point (no commas); max 18 digits

p Non-numeric: in quotes or apostrophes; max 160 characters

p Hexadecimal: inside x'...' or x"..."; only hexadecimal characters (0-9,
A-F, or a-f); max 320 characters (160 bytes)

p Null-terminated: inside z'...' or z"..." ; max 159 characters; COBOL
appends a null character (x'00')

p DBCS: inside g'...' or g"..." or n'...' or n"..."; max 28 characters

p National: inside n'...' or n"..."; max 80 characters

Picture Character Strings

p Used to describe data items, for example: PIC x(20)

p Used to describe desired editing, for example: PIC ZZ,ZZ9.99

Comments

p A line with an asterisk (*) or slash (/) in column seven (everything
else in the line is considered to be the comment)

¨ Using a slash in column seven will also start a new page of your
COBOL compile listing output

¨ The string *> in a line indicates all following text is a comment
(an "inline comment" [IBM COBOL V5 or later])

Copyright ã 2024 by Steven H. Comstock 21 Fundamentals

Other Characters Supported

p In addition to the basic character set, the IBM COBOL compiler
supports the following characters / character sets

¨ DBCS - Double Byte Character Set; strings of characters with
each character consisting of two bytes

7 Delimited by shift-in and shift-out characters (X'0E' and X'0F',
respectively)

7 In the range X'41' to X'FE' for each byte

7 Can be used to create COBOL words (for example, data item
names or paragraph labels) (maximum of 14 characters [28
bytes] plust the shift-in and shift-out delimiters)

â Some restrictions: cannot be used for program names, object
oriented class names, and a few other places

7 Can also be used in literals, comments, and picture strings

â Some restrictions for literals, discussed as encountered

Copyright ã 2024 by Steven H. Comstock 22 Fundamentals

Other Characters Supported, continued

p Other character sets supported

¨ Unicode - single standard to encode characters from all human
languages, plus many specialized symbols

7 Although there are several variations, this compiler supports the
Unicode version called UTF-16 in which most Unicode characters
are two bytes but some may be composed of two two-byte pairs
(called surrogate pairs)

â In some cases a character is composed of one or more
Unicode characters and one or more combining units (so a
single character may take four bytes or more, in increments
of 2 bytes)

â Thus, for Unicode, the term "character" encompasses 2 bytes
(or more, in increments of 2 bytes)

â It is the programmer's responsibility to ensure Unicode
characters are not split as a result of MOVEs or other
COBOL instructions

7 Called "National" characters in this compiler

7 Cannot be used for COBOL words, but may be used in literals
and run-time data

Copyright ã 2024 by Steven H. Comstock 23 Fundamentals

Compiler Options

p In addition to COBOL statements, your COBOL source program may
include directives to the compiler itself

¨ The first we will mention are compiler options - telling the
compiler various ways to look at the source, produce object
code, format the compile listing, and so on

¨ Default compiler options are specified when the compiler is
installed

¨ Although we won't go into details in this course, most default
options can be overridden

7 In the JCL that requests the compile and / or

7 In PROCESS statements in your source program

p From time to time in this course, we will mention when a compiler
option, or other directive, impacts how the compiler interprets what
you code in your COBOL source statements

¨ Our first example is the compiler option NSYMBOL; this option
has one of two values to choose from

7 NSYMBOL(DBCS) - the IBM-supplied default; says literals coded
using n'...' or N'...', n"...", or N"..." represent DBCS values

7 NSYMBOL(NATIONAL) - says literals coded using n'...' or N'...',
n"...", or N"..." represent NATIONAL values (UTF-16)

Copyright ã 2024 by Steven H. Comstock 24 Fundamentals

Quotes and Apostrophes

p A matched set of (single or double) quotes is used to delimit
non-numeric literals

E.g.:

 'Inventory Report'

 "Customer name"

¨ You should use only one of these for delimiting literals
throughout any given program

7 You may mix them, as long as each starting delimiter has a
corresponding closing delimiter of the same kind (both ' or both "
for any given literal)

¨ Although the double quote is the ISO/ANSI standard, most IBM
installations use the single quote (apostrophe)

7 For this reason, we'll use the apostrophe for delimiting
non-numeric literals in this course

Copyright ã 2024 by Steven H. Comstock 25 Fundamentals

Quotes and Apostrophes, 2

p If a quoted string is to contain a quote, the contained quote is
represented by two consecutive quotes:

'Larry''s News Shop'

p In the latest standard, you may mix and match quotes and
apostrophes in a single program:

¨ Include some literals bounded by apostrophes

¨ Include some literals bounded by quotes

¨ As long as the opening character is the same as the closing
character for any one non-numeric literal string

p Comments and non-numeric literals may contain any character;
COBOL does not try to process these items

Copyright ã 2024 by Steven H. Comstock 26 Fundamentals

Overall Structure of a COBOL Program

IDENTIFICATION DIVISION
Paragraphs

Entries
Clauses

ENVIRONMENT DIVISION
Sections

Paragraphs
Entries

Clauses
Phrases

DATA DIVISION
Sections

Entries
Clauses

Phrases

PROCEDURE DIVISION
Sections

Paragraphs
Sentences

Statements
Phrases

p That is, each program is made up of divisions, which are further
sub-divided as shown

p Comments may be placed anywhere in the program, as may blank
lines

Copyright ã 2024 by Steven H. Comstock 27 Fundamentals

Area-A and Area-B

p Lines in a COBOL program have various areas the compiler is
sensitive to:

Columns Use

 1 — 6 Sequence numbers (optional)

 7 — 7 Continuation column (for continuation indications
and comment indications)

 8 — 11 Area-A

12 — 72 Area-B

73 — 80 Program name (optional)

p Area-A is used for: division, section, and paragraph headers (the
first line in each of these entities) as well as for the first level in a
data structure (or level 77 items)

¨ That is, each of these objects must begin in Area-A

¨ In addition, "end program", "end class", and "end method"
headers, DECLARATIVES, and END DECLARATIVES statements
must all begin in Area-A (none of these are discussed in this
course)

p Area-B is used for all other components

Copyright ã 2024 by Steven H. Comstock 28 Fundamentals

Identification Division

Identification division.

Program-id. INVENTORY.

Notes

¨ The PROGRAM-ID ('INVENTORY' in this case) is the name the
program will be known by externally (that is, when you want to
run this program, or if another program calls this program)

7 This is an example of an external name

¨ Only the first eight characters of the program name ('INVENTOR'
in our example) will be used, so it's really best to use only
names that are eight characters or fewer (then no surprises later
on)

¨ Also, external names should not contain a hyphen or start with a
numeric digit, and lower case letters will be folded to upper case
when used by the system; cannot use DBCS

Example

 Identification division.
 Program-id. Inpupda.
* You may use comment lines ('*' in column 7)
* to augment these entries according to
* installation standards

¨ Note that earlier versions of COBOL supported a variety of
additional paragraphs in this division (AUTHOR,
DATE-COMPILED, etc.); now we generally just use comments

Copyright ã 2024 by Steven H. Comstock 29 Fundamentals

Programs and Files

p Most COBOL programs process data stored in external files, files
that are usually stored on tape or disk (although a report is also a
file)

¨ In this course we focus on sequential files, but COBOL can work
with a variety of file types, including indexed files and relational
data bases

p COBOL processes external files as input, output, or i-o; the type of
processing to be done is specified at OPEN time

¨ If a file is OPENed as an input file, the COBOL program issues
READ statements to retrieve records from tape or disk and
transfer the data into memory for processing

¨ If a file is OPENed as an output file, the COBOL program builds a
record in memory and then issues WRITE statements to send the
data to tape, disk, or a report

¨ Files OPENed as i-o may have both input and output operations:

7 A READ statement retrieves an existing data record from tape or
disk into memory

7 A WRITE statement adds a record to the external file from
memory

7 A REWRITE statement updates a record on a disk file with new
information from memory

Copyright ã 2024 by Steven H. Comstock 30 Fundamentals

Programs and Files, continued

p Pictorially, we have something like this, when the program is run:

Copyright ã 2024 by Steven H. Comstock 31 Fundamentals

READ filename INTO area input files

output files

i-o files

READ filename INTO area

WRITE record FROM area

REWRITE record FROM area

WRITE record FROM area

p In your COBOL program, you identify the files you will be
working with in the Environment Division ...

Environment Division

Environment division.
Input-Output section.
File-control.
 Select Cardin assign to CARDS.
 Select Listing assign to REPORT1.
 Select Transact assign to TRANSACT.
 Select Master assign to master
 file status is master-stat.
.
.

p Notice the division header, the section header, and the paragraph
header

¨ This will help you get the feel for the structure and organization
of this part of the program

p The word immediately following 'Select' is the 'file name', or the
name you use inside your program to reference the file (for example
in 'open' and 'read' statements)

p The word immediately following 'assign to' is the name you will use
at run time to relate each file name to a particular external file

p The 'file status' name is a data item you define in working-storage as
a tool for checking the outcome of I/O requests; more on this later

Copyright ã 2024 by Steven H. Comstock 32 Fundamentals

Identifying External Files

p The object of the ASSIGN TO clause must follow the rules for an
external name, and is called the “ddname”

¨ At run time, JCL is used to connect each ddname to an actual,
external file using a JCL DD statement:

//ddname DD DSNAME=actual-file-name,. . .

p COBOL can also access files residing in a zFS (z/OS File System) -
files supported as part of z/OS UNIX System Services

¨ In the SELECT statement, specify ORGANIZATION IS LINE
SEQUENTIAL

¨ The object of the ASSIGN TO clause is a ddname if you supply a
DD statement at runtime

7 This statement must contain at least PATH= and
FILEDATA=TEXT

7 It may also contain PATHOPTS, PATHMODE, PATHDISP

¨ If no DD statement is supplied at run time, OPEN will treat the
ddname as an environment variable name

7 In this case, you must export a path name into this variable
before you OPEN the file (details not discussed in this course)

Copyright ã 2024 by Steven H. Comstock 33 Fundamentals

Data Division

p The Data division contains one to four sections

¨ The File Section.

7 Used for file / record descriptions

¨ The Working-storage Section.

7 Describes constants, counters, tables, other data elements and
structures

¨ The Local-storage Section.

7 Contains data elements that are dynamically created each time
the program gets control and deleted when the program returns

¨ The Linkage Section.

7 Describes items passed from other programs by 'CALL'

p We'll only use the first two of these sections in this course

Copyright ã 2024 by Steven H. Comstock 34 Fundamentals

File Section Examples

Data division.
File section.
FD CARDIN.

-----Record description(s).

FD LISTING.
-----Record description(s).

FD TRANSACT
 block contains 0 records.

-----Record description(s).

FD MASTER
 block contains 0 records.

-----Record description(s).

Notes

p Watch punctuation and Area-A, Area-B margins

p Names after 'FD' must match file names in Select statements ('FD'
stands for File Definition)

p 'Block contains' clause is optional, but if not coded implies 'block
contains 1 records' (The phrase must be 'block contains 1 records')

¨ Generally code 'block contains 0 records' for output files, since
the operating system calculates block size

¨ Omit 'block contains' for input files (system will get from the
label) and for print files (operating system blocks them in a
special way automatically)

Copyright ã 2024 by Steven H. Comstock 35 Fundamentals

File Section Notes

p To describe a record, you'll need to supply a record name, a picture
of the data, and something called a level number

p The compiler also accepts a RECORDING MODE clause

¨ It is optional, but without it you get a warning message at
compile time

p For this course, you may omit the RECORDING MODE clause, or you
may code “recording mode is F” to eliminate the warning messages

¨ ('F' says your records are fixed length records)

FD CARDIN
 recording mode is F.

-----Record description(s).

FD LISTING
 recording F.

-----Record description(s).

FD TRANSACT
 recording mode is f.

-----Record description(s).

FD MASTER
 recording mode f.

-----Record description(s).

Copyright ã 2024 by Steven H. Comstock 36 Fundamentals

Note that “mode” and
“is” are optional words

Record Descriptions

p We'll be looking at all the alternatives for describing data later in the
course

p For right now, it's sufficient to describe a record by giving it a name,
using a level number of 01, and indicating how large the record is

p In our example we might code:

Data division.
File section.
FD CARDIN
 recording mode is F.
01 Card-rec pic x(80).

FD LISTING
 recording F.
01 Report-rec pic x(100).

FD TRANSACT
 recording mode is f.
01 Trans-rec pic x(60).

FD MASTER
 recording mode f.
01 Master-rec pic x(320).

p So in the Data division, File section, we have an FD entry for every
file

¨ And each FD entry must be followed with an entry that gives a
name to records in the file and that indicates how large records
in the file are

Copyright ã 2024 by Steven H. Comstock 37 Fundamentals

Recap So Far

p We have looked at the fundamentals of COBOL

¨ Character set, punctuation, words

¨ Area-A and Area-B

¨ Structure of a program (divisions, sections, paragraphs, etc.)

p We looked at the first two divisions as thoroughly as needed for the
content in this course

p We have examined the File section of the Data division

¨ We have not yet examined how to define data structures or
individual data items

Copyright ã 2024 by Steven H. Comstock 38 Fundamentals

Recap, continued

p The roles of the various divisions are:

Identification Division

¨ Specify program-id

¨ May contain comments to describe function and history of
program

Environment Division

¨ Identify file names and associate internal file names to external
file names

Data Division

¨ File Section: Specify file and record characteristics (data outside
the program: external files)

¨ Working-storage Section: Specify data items in the program

Procedure Division

¨ Specify the instructions to use to operate on the data

p We still need to learn how to specify data items, both external and
internal; but first ...

Copyright ã 2024 by Steven H. Comstock 39 Fundamentals

Computer Exercise: Starting a COBOL Program

If you need a logon id, this is the time to get one from the instructor. If you
need any help getting going, this is a good time to get it.

Run the rexx exec called D715STRT; this creates two libraries for you:

<userid>.TR.CNTL - contains JCL you will need to
compile, link, and test the labs

<userid>.TR.COBOL - contains some starter code for later;
this is where you will code all your
programs

To run the exec, use ISPF 6 (command); and key in the following:

===> ex '_________.train.library(d715strt)' exec

and press <Enter>

This will run the rexx exec; D715STRT prompts you for a high level qualifier
to use for the data set names mentioned above, defaulting to your TSO id;
this is normally fine, so just press <Enter>. You should see a screen telling
you the setup was successful.

This exercise is designed to get a COBOL program started. We haven't
covered enough to code a complete program yet, but we can write code that
will provide a basis for future work.

This is also an opportunity to check out logon id's, the system editor, and
other preliminary issues that can distract us later.

*** more ***

Copyright ã 2024 by Steven H. Comstock 40 Fundamentals

Computer Exercise: Starting a COBOL Program, p.2.

Create a program, call it EXER01 (how original) in your TR.COBOL library.
This should be both the file or member name and the program-id name.

Code the identification division, the environment division, and the file
section of the data division.

Specify two files in your program. One will describe an existing
inventory file and the other will eventually be a report file. Records
in the inventory file are 100 bytes long. Records in the report file
will be 106 bytes long.

Use an fd name of INVNTRY for the input file and REPRT for
the report file.

Eventually, your program will read in records from the inventory
file and write them out to the report file.

Do not code any options we have not discussed yet. Keep it simple.

You can compile your code, EXER01 using member COBSUBC in your
TR.CNTL library; in the third line from the bottom, change the SET instruction
to name your program; e.g.:

// SET O=EXER01

Then submit the job; fix any compiler errors and repeat until the code
compiles clean.

Note: this job will try to compile, and bind, Right now we only care about the
compile part. This exercise is just to get you going for later labs.

Then take a short break and we'll pick it up again.

Copyright ã 2024 by Steven H. Comstock 41 Fundamentals

