
The Trainer's Friend

9355 E Center Ave., #8C Telephone: (303) 355-2752
Denver, Colorado 80247
U.S.A. E-mail steve@trainersfriend.com

Internet www.trainersfriend.com

Advanced Topics in COBOL

Student Materials

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademark s and registered trademarks of International Business Machines, Inc.:

BookMaster, CICS, DB2, Enterprise Systems Architecture/370, Enterprise Systems
Architecture/390, Enterprise Systems Connection Architecture, ESA/370, ESA/390, FICON, IBM,
IBM Z, IBM Z family, IBM Z systems, IBM z13, IBM z13s, IBM z14, IBM z15, IBM z16, IBM
zSystems, IBMLink, ibm.com, IMS, Language Environment, MQSeries, MVS, NetView, AIX,
AS/400, BookManager, BookMaster, CICS, BladeCenter, DB2, DS8000, developerWorks, IMS,
Language Environment, MQSeries, MVS, PR/SM, Processor Resource / Systems Manager,
OS/390, Parallel Sysplex, RACF, Redbooks, S/390, System/360, System/370, System/390, System
z, System z9, System z10, z/OS, z/Architecture, zEnterprise, zSeries, OS/390, Parallel Sysplex,
RACF, Redbooks, S/390, System/390, System z, System z9, System z10, z/OS, z/Architecture,
zEnterprise, zSeries, z9, z10, z13, z14, z15, z16,

Trademarks and registered trademarks of Microsoft Corp.: Excel, Internet Explorer, JScript,
Microsoft, SQL Server, Windows

Trademark of American National Standards Institute: ANSI

Trademark of Phoenix Software International: (E)JES

Trademark of Fischer International Systems: IOF

Trademark of TONE Software: OMC-FLASH

Trademarl of Syncsort Corp.: SyncSort

Registered Trademark of The Open Group: UNIX

Registered Trademark of Linus Torvalds: LINUX

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, HTML, HTTP, DOM, CSS, XML,
XHTML, XSL, WebFonts, Amaya

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

The content of this publication is copyright © 2024 by Steven H. Comstock.

Advanced Topics in COBOL (Enterprise COBOL, z/OS) - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code COBOL mainline programs that CALL subroutines, passing arguments
as necessary and COBOL subroutine programs that are CALLed, receiving
any passed parameters

2. Explain the tradeoffs in deciding whether to use static or dynamic linkages
when using external subroutines

3. Define and process tables, including:

Initializing tables using VALUE or REDEFINES clauses, the INITIALIZE
statement, loops, and extracting data from records in a file

Working with tables of more than one dimension

4. Process tables using subscripting, indexing, or mixing subscripting and
indexing; also using relative subscripting and relative indexing

5. Use the SET, SEARCH, and SEARCH ALL verbs as they apply to indexed
tables

6. Use the ALL subscript capability of intrinsic functions

7. Work with variable length records in sequential files

8. Use the string handling features of COBOL, including:
a. Reference modification (sub-stringing)
b. Hexadecimal notation
c. LENGTH OF special register and the LENGTH intrinsic function
d. INSPECT, STRING, and UNSTRING verbs
e. Null-terminated strings

9. Use some advanced features of the newest IBM COBOL compilers, including

a. Local-storage section
b. Recursive programs
c. Pointers, procedure-pointers, function-pointers, Address Of special register
d. Dynamic file allocation

10. (Optionally) use the COBOL SORT and MERGE verbs.

1

D725 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.3

Advanced Topics in COBOL (Enterprise COBOL, z/OS) - Topical Outline

Day One

Introduction to Subroutines
Invoking Subroutines - CALL
Leaving a CALLed program
Passing Arguments and Receiving Parameters
Computer Exercise: A Mainline and Subroutines 18

Additional Subroutine Topics
Static vs. Dynamic CALLs
CALL ... ON OVERFLOW / EXCEPTION
CANCEL
Passing Arguments BY VALUE
How arguments are passed
How parameters are received
Returning values: the RETURNING phrase
Shared Data: the EXTERNAL Attribute
Computer Exercise: External Subroutines and Shared Data 58

Nested Programs
Nested Programs - The Concept
Nested Program Structures
The Uses of Nested Programs
The INITIAL Attribute
Computer Exercise: Nested Programs ... 71

Additional Subroutine Capabilities - Optional
ENTRY Points
Local-storage
Recursive programs

Table Handling
Tables and subscripts
Loading a Table From a File
Looking Up an Element in a Table
Computer Exercise: Build and Print a Table 96

2

D725 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.3

Advanced Topics in COBOL (Enterprise COBOL, z/OS) - Topical Outline, p. 2.

Day Two

Table Handling, II
Sorting a Table

Computer Exercise: Table Sorting ... 112
The COBOL SORT verb (format 2)

Computer Exercise: using the SORT verb for tables115

Table Handling, III
Variable Length Tables
Two-Dimensional Tables

Initializing Tables
VALUE clauses, REDEFINES and INITIALIZE
Loops and I/O
PERFORM ... VARYING

Computer Exercise: Two Dimensional Tables 145

Indexing
Index-names and Index Data Items
SET, SEARCH, SEARCH ALL

Computer Exercise: Using Indexes and SEARCH 178

Intrinsic Functions and Tables

Concepts and Syntax
The ALL subscript

3

D725 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.3

Advanced Topics in COBOL (Enterprise COBOL, z/OS) - Topical Outline, p. 3.

Day Three

Variable Length Records
Defining
Processing
Computer Exercise: Reading a File With Variable Length Records 201

Introduction to String Handling In COBOL
Hex Notation
Reference Modification
LENGTH OF special register (IBM extension)
LENGTH intrinsic function
INSPECT
Computer Exercise: Analyzing Strings .. 235

More String Handling in COBOL
STRING
UNSTRING
Computer Exercise: More String Handling 256

COBOL SORT Facility (Optional)
Sort Files
The SORT Verb
Sort Control Statements
MERGE
Computer Exercise: COBOL SORT .. 275

Other Advanced Topics (Optional)
Null-terminated strings
Pointers
Address Of Special Register
Procedure-pointers
Function-pointers
Dynamic file allocation

Appendix - list of intrinsic functions .. 301

4

D725 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.3

Subroutines

Copyright ã 2024 by Steven H. Comstock 5 Subroutines

Section Preview

p Introduction to Subroutines

¨ What Are Subroutines?

¨ Invoking Subroutines - CALL

¨ Leaving a CALLed Program

¨ Passing Arguments and Receiving Parameters

¨ A Mainline and Subroutines (Machine Exercise)

What Are Subroutines?

p A subroutine is a self-contained program designed to be used by
another program

¨ Each subroutine is designed to accomplish a particular function

7 Often this function is used by many different programs, so a
subroutine is typically used by all of these programs

7 A good reason to have a subroutine, then, is to write the code to
accomplish the necessary function once, so each programmer
that needs the function does not need to reinvent the wheel

7 All users of the subroutine always get the same results, and
maintenance of the function can be isolated to the single,
common subroutine

p COBOL supports two kinds of subroutines

¨ External subroutines

¨ Internal subroutines (nested programs)

p Typically, each installation will have a library of subroutines that
perform functions needed in the kind of work that installation does

Copyright ã 2024 by Steven H. Comstock 6 Subroutines

Invoking Subroutines

p A program uses a subroutine by the CALL verb

¨ Usually passing one or more arguments (values or variables
used as inputs to the subroutine)

¨ The subroutine uses the passed values to accomplish its
particular function

7 One or more of the passed variables might be modified, if
appropriate to the function of the subroutine

7 Usually a value is returned to the invoking program, either in one
of the variables passed to the subroutine, or in a special register,
RETURN-CODE

â This returned value generally indicates if the subroutine's
function was performed without error or if some actual or
potential problem was encountered

â The expected values and their interpretation are decided on
by the person coding the subroutine, there are no universal
values and meanings, although a returned value of zero
almost always means a successful completion

p Subroutines may in turn call other subroutines

p A mainline program is the top of the calling chain: it is not called,
but it calls one or more subroutines which in turn may call
additional subroutines

Copyright ã 2024 by Steven H. Comstock 7 Subroutines

Subroutine Coding

In CALLing program:

data names are in CALLing program's DATA
DIVISION. Usually 01 level, but not necessarily.

program-id of subroutine

CALL 'program' [USING name1 name2 ... namen]

match made, based on order, at execution time

In CALLed program:

PROCEDURE DIVISION [USING namea nameb ... namex]

data names are in CALLed program's
LINKAGE SECTION. Must be level 01 or 77.

¨ Code a LINKAGE SECTION after a WORKING-STORAGE SECTION,
if any

Copyright ã 2024 by Steven H. Comstock 8 Subroutines

Leaving a CALLed Program

p Return to CALLing Program via:

GOBACK

¨ Returns control out of this program to the calling program

¨ If issued from a main program, control returns to host operating
system

STOP RUN

¨ Returns control out of this program directly to host operating
system

¨ If issued from a subroutine, you will not get back to the program
that called the subroutine

EXIT PROGRAM

¨ Control returns to the program that CALLed this program

¨ If this program was not CALLed, this statement is ignored (in
other words, this statement has no effect in a main program)

Copyright ã 2024 by Steven H. Comstock 9 Subroutines

Notes on Leaving Any Program

p EXIT PROGRAM may be used for a subroutine

p STOP RUN may be used for a main program

¨ Note if you issue STOP RUN in a subroutine, the whole run unit
is terminated without returning to the calling program

7 Only appropriate if an error is detected or the application is
designed to come to an abrupt halt for some other reason

p GOBACK may be used for either a subroutine or a main program

p GOBACK was not part of the ISO/ANSI standards until the 2002
standard; prior to that, it was an IBM extension to the ANSI standard

p If the last physical instruction is executed and there is no STOP
RUN, EXIT PROGRAM, or GOBACK, the program issues an implicit
EXIT PROGRAM

¨ This is OK in a subroutine, but can be a problem in a main
program (use STOP RUN or GOBACK)

Copyright ã 2024 by Steven H. Comstock 10 Subroutines

CALL “BY CONTENT”

CALL 'SUBX' USING TRANS-REC

 BY CONTENT 'UPDATE' 'FILENAME' FLAG-DATA

 BY REFERENCE MASTER-REC EDIT-NOTES

 BY CONTENT 'PGM005' XYZ-AR

CALL 'CBLTDLI' USING BY CONTENT 'GU '

 BY REFERENCE PCB-AREA IO-AREA SSA-AREA

p “BY CONTENT” and “BY REFERENCE” apply to subsequent
arguments until another “BY” phrase occurs

p “BY REFERENCE” is the default, and reflects the way arguments
have been passed in COBOL historically:

CALL 'CALCWIT' USING PERSON, RESULT

Copyright ã 2024 by Steven H. Comstock 11 Subroutines

More on Passing Arguments

p For each argument passed “BY REFERENCE”, COBOL passes a
pointer to the actual data item to the subroutine ("by reference
indirect")

¨ Literal values may not be passed BY REFERENCE

¨ Changes to passed arguments by the subroutine are reflected in
the CALLing program's corresponding arguments: they are the
same location in memory

p For each argument passed “BY CONTENT” COBOL passes a pointer
to a work area containing the value of an alphanumeric literal or the
value in a named data item ("by value indirect")

¨ Any changes by the CALLed program do not affect the value in
the CALLing program

BY REFERENCE passes the item

BY CONTENT passes a copy of the item

p The pointers are gathered together in a list and the address of this
list of pointers to arguments is passed to the CALLed program

p Vocabularly police alert: CALL passes arguments; the subroutine
receives parameters - same data, just different names

Copyright ã 2024 by Steven H. Comstock 12 Subroutines

A Subroutine - Example

p This simple subroutine expects to be passed a payroll record (which
contains the current gross earnings and deductions for a person),
and a field to place the result of the calculation:

amount-due = gross - deductions

¨ Notice the calculated value is placed into 'result' - the second
argument passed to the program

 Identification Division.

 Program-id. CALCWIT.

 Environment Division.

 Data Division.

 Linkage Section.

 01 Person.

 02 Pic x(30).

 02 Gross Pic S9(7)V99.

 02 Deducts Pic S9(5)V99.

 02 Pic x(241).

 01 Result Pic S9(7)V99.

 Procedure Division using Person, Result.

 Compute result = Gross - Deducts

 Exit program.

¨ Notice, too, the Procedure Division header has a USING clause
as described a few pages ago

Copyright ã 2024 by Steven H. Comstock 13 Subroutines

A Mainline Program That Calls a Subroutine

p This program uses CALCWIT to calculate the amount due for an
employee's pay check ...

 Identification Division.

 Program-id. PAYROLL.

 Environment Division.

 .

 .

 Input-Output section.

 File-Control.

 Select People assign to --------.

 Select Checks assign to --------.

 Data Division.

 File Section.

 FD People

 Block Contains 0 records.

 01 Personnel-Record.

 02 Employee-id Pic x(7).

 .

 .

 02 Gross-income Pic S9(7)V99.

 02 Deductions Pic S9(5)V99.

 .

 .

 FD Checks.

 .

 .

Copyright ã 2024 by Steven H. Comstock 14 Subroutines

A Mainline Program That Calls a Subroutine, p.2.

¨ Notice on the CALL, this program calls the second argument
“Amount-due”, while in CALCWIT the second parameter is called
“Result”

¨ The CALL process makes the connection positionally

 Working-Storage Section.

 77 Amount-due Pic S9(7)V99.

 .

 .

 Procedure Division.

 Mainline.

 Open input People, output Checks

 Perform read-people

 Perform Write-checks

 until no-more-records

 Stop run.

 .

 .

 Write-checks.

 .

 .

 Call 'CALCWIT' Using Personnel-record,

 Amount-due

 .

 .

Copyright ã 2024 by Steven H. Comstock 15 Subroutines

Subroutine Notes

p Notice how important it is for the arguments being passed to match
the parameters being caught

¨ The pictures, size, and data types should be defined the same in
both the CALLing routine and the CALLed routine

¨ The order of the arguments passed must match the order of the
parameters received

p Notice that you may pass an element in a structure instead of the
entire structure, if that is appropriate

¨ Current thinking is that it is better to pass just the data elements
being worked on

7 This can simplify maintenance if structures change

p COBOL allows a program to pass a file

¨ However, there is no way for a COBOL subroutine to receive a
file

¨ Files may be shared among COBOL programs through the use of
the EXTERNAL attribute, discussed later

Copyright ã 2024 by Steven H. Comstock 16 Subroutines

Internal vs. External Subroutines

p If a subroutine is internal, it is nested in the program that calls it,

¨ The calling program and its nested subroutines are compiled and
bound all together at the same time - they are in the same
source code

p If a subroutine is external, the calling program and its subroutines
must be compiled separately

¨ The subroutines may be bound together with the calling program
(static linkage)

¨ Or they may be bound separately, to be brought together as
needed at run time (dynamic linkage)

¨ Or you may mix and match, some static calls and some dynamic
calls

Copyright ã 2024 by Steven H. Comstock 17 Subroutines

Computer Exercise: A Mainline and Subroutines

Code a program that reads records from two similar files and produces a
report that contains lines from records from both files.

The two files, informally called INPUTA and INPUTX, each contain inventory
information from different warehouses. The record layouts are the same, and
the files contain the same number of records. Each record represents an
item maintained in inventory.

Basically, your program should read one record from each file, and format
and write the two records to your report file, one after the other.

To do the actual formatting, we'll use a subroutine called FORMATIT. This
subroutine expects to receive four parameters:

* A record from INPUTA or INPUTX

* A one-character code, "A" or "X", indicating which file the record
is from (use a literal value)

* A place to put the formatted output (use "reprt-record")

* A two-field structure containing accumulator fields that will keep
track of values for totals (use "totallers")

The subroutine FORMATIT will, in turn, call a subroutine called VALU to
calculate the value of the current inventory item. The value is calculated as
the item unit-price times the item quantity-on-hand, rounded. VALU should be
passed the unit-price, the quantity-on-hand, the accumulator field structure
("totallers"), and the report line layout ("reprt-record"). VALU should calculate
the item-value, move it to reprt-item-value, and add it to page-value.

The mainline, which is called SC4CMPR, is supplied as a skeleton, as are
the subroutines FORMATIT and VALU . The skeletons are shown on the
following pages. You need to:

* Finish coding VALU then compile and link it
* Finish coding FORMATIT, then compile and link it
* Finish coding SC4CMPR, then compile, link, and run it.

Copyright ã 2024 by Steven H. Comstock 18 Subroutines

Computer Exercise: A Mainline and Subroutines, 2

We have provided a setup procedure to simplify running labs for this course.
You need to run the rexx exec we have provided called "D725STRT". To run
this dialog, from ISPF option 6, key in:

===> ex '________.train.library(d725strt)' exec

and press <Enter>. This rexx exec will ask you for the high level qualifier to
use for your data set names, with the default being your TSO id (which is
probably fine).

As a result of running D725STRT, three data sets are created for the labs:

<hlq>.TR.CNTL - JCL for running jobs
<hlq>.TR.COBOL - COBOL skeleton code, and your programs
<hlq>.TR.LOAD - load module library used to hold your

executable programs.

where "<hlq>" represents your data set name high level qualifier

The setup will have copied the skeleton and starter programs needed for all
the labs, including SC4CMPR, FORMATIT, and VALU, into your TR.COBOL
library, so this is where you code your solutions.

In your TR.CNTL library, you will find a member called COBSUB, which is a
job for compiling and linking subroutines [you need to change the SET O=
line to the name of the program you are compiling]. You will also find a
member called D725RUN1, which compiles, links, and runs your mainline,
automatically linking in your subroutines.

Copyright ã 2024 by Steven H. Comstock 19 Subroutines

Computer Exercise: A Mainline and Subroutines, 3

To summarize your steps:

One time only:

1. Run the setup exec

After you have coded VALU, and each time you make a change
to your copy of VALU (in TR.COBOL):

1. Edit COBSUB and change the SET O= JCL statement to
be SET O=VALU

2. Submit this job; check that it had a clean compile and link

Each time you change your copy of FORMATIT (in TR.COBOL)

1. Edit COBSUB and change the SET O= JCL statement to
be SET O=FORMATIT

2. Submit this job; check that it had a clean compile and link

Each time you change your copy of SC4CMPR (or if you need to test
SC4CMPR after changing FORMATIT or VALU) (in TR.COBOL)

1. In TR.CNTL, submit member D725RUN1

2. Check you had a successful compile, link, and test

After the listings of the provided programs is a sample of the expected
output.

Copyright ã 2024 by Steven H. Comstock 20 Subroutines

Code Supplied as SC4CMPR

 process dynam

 Identification division.

 program-id. sc4cmpr.

* Copyright (C) 2024 by Steven H. Comstock Ver2

 environment division.

 input-output section.

 file-control.

 select inputa assign to inputa.

 select inputx assign to inputx.

 select reprt assign to reprt.

 data division.

 file section.

 fd inputa

 block contains 0 records.

 01 inputa-record pic x(100).

 fd inputx

 block contains 0 records.

 01 inputx-record pic x(100).

 fd reprt.

 01 reprt-rec pic x(106).

 working-storage section.

 01 a-record pic x(100).

 01 x-record pic x(100).

Copyright ã 2024 by Steven H. Comstock 21 Subroutines

Code Supplied as SC4CMPR, p.2.

*

* headers for reprt

*

 01 inq-list-head-1.

 05 pic x value spaces.

 05 pic x(57)

 value 'Inventory - Data List'.

 05 pic x(5) value 'Date '.

 05 rpt-date.

 10 mo pic 99.

 10 pic x value '/'.

 10 da pic 99.

 10 pic x value '/'.

 10 yr pic 9999.

 05 pic x(6) value spaces.

 05 pic x(6) value 'Page: '.

 05 rpt-page-no pic 99.

 05 pic x(19) value spaces.

 01 inq-list-head-2.

 05 pic x(5) value spaces.

 05 pic x(41)

 value 'Part Product '.

 05 pic x(30)

 value ' Number Number'.

 05 pic x(25)

 value ' Reorder Inventory'.

 05 pic x(05) value spaces.

 01 inq-list-head-3.

 05 pic x value spaces.

 05 pic x(4) value ' Id '.

 05 pic x(41)

 value 'Number Description '.

 05 pic x(34)

 value ' Unit price On hand On order'.

 05 pic x(26)

 value 'Level value Flags'.

 05 pic x(04) value spaces.

Copyright ã 2024 by Steven H. Comstock 22 Subroutines

Code Supplied as SC4CMPR, p.3.

*

 01 reprt-record.

 05 pic xx.

 05 reprt-file-id pic x.

 05 pic xx.

 05 reprt-part-number pic x(9).

 05 pic x(2).

 05 reprt-description pic x(30).

 05 pic x(3).

 05 reprt-unit-price pic z,zz9.999.

 05 pic x(3).

 05 reprt-quantity-on-hand pic zz,zz9.

 05 pic x(5).

 05 reprt-quantity-on-ord pic zz9.

 05 pic x(5).

 05 reprt-reorder-level pic zz9.

 05 pic x.

 05 reprt-item-value pic zzz,zzz,z99.99.

 05 pic x(5).

 05 reprt-flag pic x.

 05 pic x.

 01 end-of-report.

 02 pic x(001) value all ' '.

 02 pic x(044) value all '*'.

 02 pic x(015) value ' End of Report '.

 02 pic x(046) value all '*'.

 01 totallers.

 05 page-no-flags pic s9999 binary.

 05 page-value pic s9(7)v99 packed-decimal.

Copyright ã 2024 by Steven H. Comstock 23 Subroutines

Code Supplied as SC4CMPR, p.4.

*

* variables associated with reprt listing

*

 01 inq-list-misc.

 05 inq-list-line-count pic s99 binary value +0.

 05 inq-list-max-lines pic s99 binary value +55.

 05 inq-list-space pic 9 value 2.

 05 pge-ctr pic s99 comp-3 value +1.

 05 rpt-no-flags pic s9999 value +0.

 05 rpt-value pic s9(7)v99 comp-3 value 0.

 05 grand-title pic x(30) value 'Report totals:'.

 05 in-date.

 10 yr pic 9999.

 10 mo pic 99.

 10 da pic 99.

 77 more-records pic x value 'Y'.

 88 no-more-records value 'N'.

 01 total-line.

 02 pic x(41) value spaces.

 02 total-title pic x(41) value 'Page totals:'.

 02 total-value pic z,zzz,z99.99.

 02 pic xx value spaces.

 02 total-flags pic zzz9.

 02 pic x(6) value spaces.

Copyright ã 2024 by Steven H. Comstock 24 Subroutines

Code Supplied as SC4CMPR, p.5.

 procedure division.

 mainline.

 open input inputa inputx output reprt

 move function current-date(1:8) to in-date

 move corr in-date to rpt-date

 move spaces to reprt-record

 move zeros to page-no-flags, page-value

 perform list-new-page

 perform read-2-records

 perform until no-more-records

**

*

* insert a call to 'formatit', using a-record, 'A',

* reprt-record, and

* totallers

*

**

 write reprt-rec from reprt-record

**

*

* insert a call to 'formatit', using x-record, 'X',

* reprt-record, and

* totallers

*

**

 write reprt-rec from reprt-record

 add 2 to inq-list-line-count

 if inq-list-line-count > inq-list-max-lines

 perform page-totals-print

 perform list-new-page

 end-if

 perform read-2-records

 end-perform

 perform grand-totals-print

 close inputa inputx reprt

 stop run.

Copyright ã 2024 by Steven H. Comstock 25 Subroutines

Code Supplied as SC4CMPR, p.6.

 read-2-records.

 read inputa into a-record

 at end set no-more-records to True

 end-read

 read inputx into x-record

 at end set no-more-records to True

 end-read.

 list-new-page.

 move pge-ctr to rpt-page-no

 write reprt-rec from inq-list-head-1 after advancing page

 write reprt-rec from inq-list-head-2 after advancing 2

 write reprt-rec from inq-list-head-3 after advancing 1

 add 1 to pge-ctr

 move 1 to inq-list-line-count

 move 2 to inq-list-space.

 page-totals-print.

 move page-no-flags to total-flags

 move page-value to total-value

 write reprt-rec from total-line after advancing 2

 add page-no-flags to rpt-no-flags

 add page-value to rpt-value

 move zeros to page-no-flags, page-value.

 grand-totals-print.

 if inq-list-line-count > 1

 perform page-totals-print

 end-if

 move grand-title to total-title

 move rpt-no-flags to total-flags

 move rpt-value to total-value

 write reprt-rec from total-line after advancing 2.

Copyright ã 2024 by Steven H. Comstock 26 Subroutines

Code Supplied as FORMATIT

 process dynam

 Identification division.

 program-id. formatit.

* Copyright (C) 2024 by Steven H. Comstock Ver2

 data division.

*

 linkage section.

 01 f-record.

 05 f-part-number pic x(9).

 05 f-description pic x(30).

 05 f-mixed-string pic x(5).

 05 f-unit-price pic s9999v999 packed-decimal.

 05 f-quantity-on-hand pic s99999 packed-decimal.

 05 pic x.

 05 f-quantity-on-ord pic s999 binary.

 05 f-reorder-level pic s999 binary.

 05 f-switch pic x.

 05 f-old-part-number pic x(9).

 05 f-switch pic x.

 05 f-category pic x(10).

 05 pic x(23).

 01 f-letter pic x.

Copyright ã 2024 by Steven H. Comstock 27 Subroutines

Code Supplied as FORMATIT, p.2.

 01 reprt-record.

 05 pic xx.

 05 reprt-file-id pic x.

 05 pic xx.

 05 reprt-part-number pic x(9).

 05 pic x(2).

 05 reprt-description pic x(30).

 05 pic x(3).

 05 reprt-unit-price pic z,zz9.999.

 05 pic x(3).

 05 reprt-quantity-on-hand pic zz,zz9.

 05 pic x(5).

 05 reprt-quantity-on-ord pic zz9.

 05 pic x(5).

 05 reprt-reorder-level pic zz9.

 05 pic x.

 05 reprt-item-value pic zzz,zzz,z99.99.

 05 pic x(5).

 05 reprt-flag pic x.

 05 pic x.

*

*

 01 totallers.

 05 page-no-flags pic s9999 binary.

 05 page-value pic s9(7)v99 packed-decimal.

Copyright ã 2024 by Steven H. Comstock 28 Subroutines

Code Supplied as FORMATIT, p.3.

 procedure division using f-record, f-letter,

 reprt-record, totallers.

 do-the-work.

 move f-letter to reprt-file-id

 move f-part-number to reprt-part-number

 move f-description to reprt-description

 move f-quantity-on-hand to reprt-quantity-on-hand

 move f-quantity-on-ord to reprt-quantity-on-ord

 move f-unit-price to reprt-unit-price

 move f-reorder-level to reprt-reorder-level

*

* Insert a call to 'valu' here, passing the unit price,

* and quantity on hand fields, as well as the

* 'totallers' and 'reprt-record' structures

*

 if f-quantity-on-hand + f-quantity-on-ord

 < f-reorder-level

 move '*' to reprt-flag

 add 1 to page-no-flags

 else

 move ' ' to reprt-flag

 end-if

 exit program.

Copyright ã 2024 by Steven H. Comstock 29 Subroutines

Code Supplied as VALU

 Identification division.

 program-id. valu.

* Copyright (C) 2024 by Steven H. Comstock

 data division.

 working-storage section.

 01 wk-value pic s9(9)v99 packed-decimal.

 linkage section.

* Good place to define your four linkage section items:

* the unit price, the quantity on hand, the

* 'totallers' structure and the 'reprt-record' structure

 01

 01

 01 totallers.

 05 page-no-flags pic s9999 binary.

 05 page-value pic s9(7)v99 packed-decimal.

 01 reprt-record.

 05 pic xx.

 05 reprt-file-id pic x.

 05 pic xx.

 05 reprt-part-number pic x(9).

 05 pic x(2).

 05 reprt-description pic x(30).

 05 pic x(3).

 05 reprt-unit-price pic z,zz9.999.

 05 pic x(3).

Copyright ã 2024 by Steven H. Comstock 30 Subroutines

Code Supplied as VALU, p.2.

 05 reprt-quantity-on-hand pic zz,zz9.

 05 pic x(5).

 05 reprt-quantity-on-ord pic zz9.

 05 pic x(5).

 05 reprt-reorder-level pic zz9.

 05 pic x.

 05 reprt-item-value pic zzz,zzz,z99.99.

 05 pic x(5).

 05 reprt-flag pic x.

 05 pic x.

 * Good place to define your procedure division, specifying

 * the four parameters defined in the linkage section

 procedure division using

 * Good place to calculate wk-value, add wk-value to

 * page-value, and move wk-value to reprt-item-value

 exit program.

Copyright ã 2024 by Steven H. Comstock 31 Subroutines

E
x
p

e
c
te

d
 O

u
tp

u
t

N
e

s
te

d
 P

ro
g

ra
m

s

p
T

h
e
 g

e
n

e
ra

te
d

 r
e

p
o

rt
 f

ro
m

 t
h

is
 p

ro
g

ra
m

 s
h

o
u

ld
 l

o
o

k
 l

ik
e
 t

h
is

:

I
n
v
e
n
t
o
r
y

-

D
a
t
a

L
i
s
t

D
a
t
e

m
m
/
d
d
/
y
y
y
y

P
a
g
e
:

0
1

P
a
r
t

P
r
o
d
u
c
t

N
u
m
b
e
r

N
u
m
b
e
r

R
e
o
r
d
e
r

I
n
v
e
n
t
o
r
y

I
d

N
u
m
b
e
r

D
e
s
c
r
i
p
t
i
o
n

U
n
i
t

p
r
i
c
e

O
n

h
a
n
d

O
n

o
r
d
e
r

L
e
v
e
l

v
a
l
u
e

F
l
a
g
s

A

P
A
R
T
0
0
1
0
5

M
C
K
I
N
N
E
Y

M
A
R
V
E
L

1
0
.
7
5
0

3
5

1
1
5

7
8

3
7
6
.
2
5

X

P
A
R
T
0
3
1
0
5

F
i
n
a
l

F
l
a
t
u
l
e
n
c
e

1
0
.
7
5
0

3
5

1
1
5

7
8

3
7
6
.
2
5

A

P
A
R
T
0
0
1
0
8

F
I
B
E
R
G
L
A
S
S

P
U
N
C
H
C
A
R
D

(
2
0
/
B
O
X
)

1
0
.
9
0
0

3
5

2
1
6

1
0
7

3
8
1
.
5
0

X

P
A
R
T
0
3
1
0
8

G
i
g
g
l
i
n
g

G
i
g
o
l
o
s

1
0
.
9
0
0

3
5

2
1
6

1
0
7

3
8
1
.
5
0

A

P
A
R
T
0
0
1
1
1

F
I
B
E
R
G
L
A
S
S

C
H
A
L
K
B
O
A
R
D

1
1
.
0
5
0

3
5

1
1
1

1
1
3

3
8
6
.
7
5

.

.

.

A

P
A
R
T
0
0
7
3
5

N
E
I
G
H
B
O
R
H
O
O
D

Q
U
A
R
K
S

4
2
.
2
5
0

2
4
5

2
5
4

1
7
3

1
0
,
3
5
1
.
2
5

X

P
A
R
T
0
3
7
3
5

F
o
u
n
d
i
n
g

B
e
a
r
e
r
s

4
2
.
2
5
0

2
4
5

2
5
4

1
7
3

1
0
,
3
5
1
.
2
5

A

P
A
R
T
0
0
7
3
8

S
Y
M
P
A
T
H
E
T
I
C

V
A
N
D
A
L
S

4
2
.
4
0
0

2
4
5

1
6
6

2
0
1

1
0
,
3
8
8
.
0
0

X

P
A
R
T
0
3
7
3
8

N
o
i
s
y

S
m
e
l
l
s

4
2
.
4
0
0

2
4
5

1
6
6

2
0
1

1
0
,
3
8
8
.
0
0

P
a
g
e

t
o
t
a
l
s
:

3
1
2
,
5
5
6
.
0
0

0

R
e
p
o
r
t

t
o
t
a
l
s
:

1
,
7
9
8
,
9
1
6
.
0
0

4
4

Copy right © 2024 by Ste ven H. Comstock 32 Nested Programs

