
Shell Script Programming in z/OS

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, BookManager,CICS, DB2, DRDA, DS8000, ESCON, FICON, HiperSockets, IBM, ibm.com, IMS,
Language Environment, MQSeries, MVS, NetView, OS/400, POWER7, PR/SM, Processor Resource
/ Systems Manager, OS/390, OS/400, Parallel Sysplex, QMF, RACF, Redbooks, RMF, RS/6000,
SOMobjects, S/390, System z, System z9, System z10, VisualAge, VTAM, WebSphere, z/OS, z/VM,
z/VSE, z/Architecture, zEnterprise, zSeries, z9, z10

Trademarks of Microsoft Corp.: Microsoft, Windows

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Triangle Systems: IOF

Trademarl of Syncsort Corp.: SyncSort

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

Shell Script Programming in z/OS UNIX - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Use regular expressions in UNIX shell commands, where supported

2. Use the 'ed' line editor as well as the oedit editor to create and
maintain shell scripts

3. Work with directories, files, and variables using commands such as
grep, find, and typeset

4. Work with shell variables using let and expr commands

5. Create and run shell scripts, including the use of these commands
and features:

a. Prompting the script user for input using echo and read
b. Conditional logic and looping using if, test, until, while, break,

continue
c. Supporting options and parameters using for, select, case,

and getopts

6. Create and use user-defined shell functions, both inside and outside
of scripts

7. Use the powerful facilities of sed, the stream editor, including using
sed scripts as a tool to convert text files and flat files into HTML files
for viewing on the Internet or corporate intranet

8. Use classic and topological sorts of files, and various tools to compare
files and directories

9. Run shell scripts and programs in batch using the BPXBATCH facility.

Although not part of the formal lecture materials, the appendices include
comprehensive coverage of the vi / ex editor as well as the shell
command line editor and its vi, emacs, and gmacs modes, and the bc
programming language.

1

U515 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Shell Script Programming in z/OS UNIX - Topical Outline

Day One

Introduction to the class
The uses for shell scripts
Scripting languages available
And now for something completely different
Computer Exercise: Class set up ... 12

UNIX Applications
Running the UNIX shells
Shells and processes and such
Pseudo-terminals
Sessions
UNIX Jobs
Commands and processes
Shell commands: tty, sleep, ps, uname
Computer Exercise: Shells, sessions, and processes 44

Regular expressions
Regular expressions
Shell commands: grep, egrep, fgrep
Computer Exercise: Regular expressions ... 65

The shell line editor: ed
Shell editors
Shell commands: ed
Computer Exercise: The ed editor .. 101

Where did I put that file?
Shell commands: find
Shell commands: find and grep together
Computer Exercise: The find command ... 124

Introduction to shell scripts
Shell scripts
Shell commands: read, clear
Scripts and comments
Shell commands: getconf
Computer Exercise: Basic scripts ... 144

2

U515 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Shell Script Programming in z/OS UNIX - Topical Outline, p. 2.

Day Two

The if and test commands
Reserved word commands: if, test; shell commands: pathchk

Computer Exercise: Conditional processing 162

Looping in shell scripts
Reserved word commands: [[]], until, while
Reserved word commands, looping - nested loops
Reserved word commands: break, continue
Computer Exercise: Looping ... 174

Variable manipulation
Shell variables
Shell commands: let
Shell command: typeset, integer, expr
Computer Exercise: The Scores script ... 196

Parameters in shell scripts
Parameters
Accessing parameters
Reserved word commands, looping - for
Writing shell scripts - an exploration
Array variables
Computer Exercise: The Peek script .. 222

Managing choices: select and case
Menu like structures
Reserved word commands: select, case; shell commands: getopts
Scripts: basic error handling
Shell commands: print
Computer Exercise: More complex scripts 243

Functions
Functions in Scripts
Shell commands: autoload, command
Computer Exercise: A function in a script 258

Shell Flags and Options
The Shell Environment
Shell commands: set, unset
Computer Exercise: The set command .. 272

3

U515 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Shell Script Programming in z/OS UNIX - Topical Outline, p.3.

Day Three

z/OS Shell Processing
Tying it all together
Command execution
Shell commands: sh, exec, whence, type, eval, xargs
The magic number
Shell commands: file
Computer Exercise: More shell commands 297

sed: The Stream Editor
Significance of "Stream Editor"
Shell commands: sed
Computer Exercise: Displaying a file with HTML using sed 333

Sorts
Shell commands: tsort, sort
Computer Exercise: Sorts ... 349

File Compares and Other Information
Shell commands: compares
Shell commands: diff, patch, dircmp, cmp, cksum, comm, uniq, wc, od
Computer Exercise: File compares and such 376

More Work with Text Files
Shell commands: split, csplit
Computer Exercise: Splitting files ... 386

Running Shell Executables in Batch: BPXBATCH
Executables
The BPXBATCH program
The OSHELL TSO/E command
Computer Exercise: Batch work .. 407

Appendices
The bc command
The vi editor - part 1 (vi)
The vi editor - part 2 (ex)
Content summary

4

U515 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

UNIX Standards

There have been a number of UNIX standards that have become popular over
the years, so many that "open source" is almost "open chaos". In an attempt to
re-establish common ground, two major organizations, The Open Group, an
organization sponsored by many of the major vendors, and the IEEE (Institute of
Electrical and Electronics Engineers) a well-respected technical, non-profit
organization, have combined to establish the Single UNIX Specification (SUS), a
document that both organizations have pledged to adhere to.

This document merges and extends standards by establishing a common
vocabulary and set of APIs (Application Programming Interface's, including
commands and utilities) that build on the IEEE's POSIX standard and The Open
Group's UNIX 95 (XPG) standard.

Some web pages that are of interest for those who want to explore more details:

http://www.unix-systems.org/ - main page to explore the SUS from;
the standard may be downloaded from
here in hypertext format or PDF

http://www.ieee.org/index.html - home page for the IEEE

http://www.opengroup.org/ - home page for The Open Group

IBM's z/OS UNIX System Services conforms to various levels of these standards
and includes extensions to the standards. Remember that while any given
extension may be nice to have / use, using such a feature may make your work
less portable to other UNIX platforms (or even not portable to such platforms).

In 2006, with the advent of z/OS 1.8, some commands had to change the
meaning of some of their options and flags in order to conform to version 3 of
SUS (SUSv3). A special environment variable was defined, _UNIX03, such that
if that variable has a value of YES, then the new behavior takes effect; if this
variable is undefined or does not have a value of YES, the prior behavior is in
effect. Places where this is a concern are documented throughout these
materials.

In 2008, SUSV4 was released. No information on how this is implemented for z/OS as of
this course publication date.

5

U515 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

This page intentionally left almost blank.

6

U515 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Scripts -Precursor

Copyright � 2012 by Steven H. Comstock 7 Scripts - Precursor

Section Preview

� Introduction to the class

� The uses for shell scripts

� Scripting languages available

� And now for something completely different

� Class set up (Machine exercise)

Introduction to the Class

� This course builds on our previous course "Introduction to z/OS
UNIX", and so assumes you have taken that course

� Or have equivalent experience

� In this section, we want to accomplish these tasks:

� Establish the reasons for writing shell scripts

� Describe the various scripting languages available

� Although in this course we will only write scripts using the z/OS
shell scripting language

� Outline the directions we'll go from here

� We'll end the section with a lab to set up our files for the rest of the
class

Notes

� Appendix D has a summary of the content of the prerequisite
course and this course, combined, as a handy reference

� You may run shell labs using OMVS or telnet, except the first lab
and the last lab require using TSO/ISPF

Copyright � 2012 by Steven H. Comstock 8 Scripts - Precursor

The Uses for Shell Scripts

� The primary reasons people code and use shell scripts are...

� Simplify using commands

� Scripts can prompt the user for information then build and run the
appropriate command(s), thus freeing the user from remembering
[or even knowing] the syntax and options of the commands

� And "user" here can even include the programmer

� Reduce keying efforts

� Storing a commonly used sequence of commands (such as
setting environment variables) reduces this repetitive process to
running one script

� Help manage batch jobs

� Scripting in UNIX plays the same role as JCL in running z/OS
batch jobs

� With even greater flexibility

� A script can set up the environment for running a program, run
the program, and repeat the process for additional programs

� Or the same program with different files or parameters

Copyright � 2012 by Steven H. Comstock 9 Scripts - Precursor

Scripting Languages Available

� In the z/OS environment, you may write scripts using the scripting
language provided by each shell

� IBM supplies two shells: z/OS shell, and tsch shell

� In addition, you can write shell scripts in REXX

� PERL and AWK are two other UNIX-based scripting languages,
primarily used for CGI scripts

� In this course, we will be writing scripts using the z/OS shell
scripting language, which provides these facilities

� A large collection of imperative commands

� Ability to create, set, and manipulate variables, including variable
substitution in commands

� Ability to accept and use parameters specified when a script is
invoked

� Access to three files: stdin, stdout, stderr, automatically; support
for file descriptors

� Ability to invoke programs resident in the HFS or in z/OS PDS or
PDSEs

� Conditional logic and looping capabilties

Copyright � 2012 by Steven H. Comstock 10 Scripts - Precursor

And Now For Something Completely Different

� To create a script, you need an editor - a program that lets you key in
new scripts and modify exisiting scripts in the z/OS UNIX file system
(since shell scripts have to be run from there)

� In the prerequisite course, we used oedit to build some small scripts
as part of the labs (cmds, .profile, and run_set)

� But we should also learn about the editors more commonly used in
UNIX environments

� ed - the shell line editor; used from the command line

� sed - the shell stream editor; mostly used in scripts

� The vi editor used under telnet and rlogin (including ex)

� shell editor - built-in shell editor for the command line and history
file only; not discussed in this cours

� Our editor focus will be on ed and sed; vi and ex are discussed
in the appendices to this course handout

� Before we can work with any editors, we need to work on some
concepts familiar to every UNIX user

� Shells and processes

� Regular expressions, and the commands grep, egrep, fgrep

� The shell find command

� But first, we will run a setup lab to prepare for the rest of the course
...

Copyright � 2012 by Steven H. Comstock 11 Scripts - Precursor

Computer Exercise: Class Set Up

To set up for the lab requires some work. First, from ISPF option 6 issue this
command:

===> ex '___________.train.library(u515strt)' exec

This will invoke a small dialog to create some files we will use for later exercises.
The first thing you will see is a prompt for the high level qualifier to use for the
data set names; it is set to be your TSO id and this is probably OK. In any case,
set the value you want and press <Enter>. At this point the files you need will be
created. The file names will begin with your high level qualifier (<hlq>) followed by
TR:

<hlq>.TR.CNTL (PDS for JCL)
<hlq>.TR.INPUTX (data file)
<hlq>.TR.LIBRARY (PDS for data and source code)
<hlq>.TR.LOAD (PDS for executable programs)
<hlq>.TR.ZINPUTX (data file)

Next you need to create some directories under your UNIX home directory, so get
into the shell (this can be omvs or telnet). Follow these steps:

Make sure you have these directories (you may have them from
the prerequisite course, in which case, you don't have to create them):

data
bin
tmp
public_html (your installation may vary on this one)

Finally, copy these files (again, any that are there before may be
used as is); you may use TSO commands (oputx) or UNIX commands
(cp) to do this

<hlq>.TR.LOAD(ASTAT) —> /u/yourid/bin/astat
<hlq>.TR.LIBRARY —> /u/yourid/data (use 'lc' option of oputx)
<hlq>.TR.INPUTX —> /u/yourid/inputx (as binary)
<hlq>.TR.ZINPUTX —> /u/yourid/zinputx

Copyright � 2012 by Steven H. Comstock 12 Scripts - Precursor

z/OSShell

Copyright � 2012 by Steven H. Comstock 13 z/OS Shell

Section Preview

� UNIX Applications

� Running the UNIX Shells

� Shells and Processes and Such

� Pseudo-Terminals

� Sessions

� UNIX Jobs

� Commands and Processes

� Shell Commands: tty, sleep

� Shell Commands: ps

� Shell Commands: uname

� Shells, Sessions, and Processes (Machine Exercise)

Running the UNIX Shells

� Whether you enter the OMVS command from either TSO READY or
ISPF 6, or you connect using telnet, the information in your security
package's OMVS segment is used to start a shell

� In this section, we assume you are using IBM's RACF program
product; similar remarks apply to other products

� You can examine your RACF OMVS segment by issuing the TSO
command (from READY, ISPF 6, or omvs command line, but not
telnet):

listuser username omvs

� The response to this command is several lines of display that
look something like this:

UID= nnnnnnnnnn (your numeric user id)
HOME= /u/username (your initial working directory)
PROGRAM= /bin/sh (your default shell program)
. (other parameters)
. "
. "

� At this time, we just care about the PROGRAM parameter

� This tells the initialization routines which shell program to start
up

� /bin/sh is the program name for the z/OS shell, the shell we have
been working under during the prerequisite course and will work
under in this course

Copyright � 2012 by Steven H. Comstock 14 z/OS Shell

Running the UNIX Shells, continued

� IBM supplies two shell programs

� z/OS shell (/bin/sh), based on UNIX System V with some features
of KornShell included; conforms to POSIX standard 1003.2

� tcsh shell (/bin/tsch), based on the Berkeley UNIX C shell (with
some additions / enhancements)

� You can request the tcsh shell be your default by, in the RACF case,
issuing this TSO command:

altuser username omvs(program('/bin/tcsh'))

� [in a similar fashion, you can alter other properties, such as your
home directory; in some cases you need authorization]

� You can supply other alternative shell programs if you like, and set
the default in a similar fashion

� We discuss the major differences between the z/OS shell and tcsh
shell in a different course

Copyright � 2012 by Steven H. Comstock 15 z/OS Shell

Running the UNIX Shells, continued

� When z/OS is started, the z/OS UNIX kernel is also started

� As part of that process, the script called /etc/rc is run to
accomplish such tasks as

� Start the INET daemon

� Setup the automount process

� Establish system-wide environment variables

� When you issue omvs (or when you telnet or rlogin to a system
running z/OS UNIX), the appropriate shell is started as a login shell

� When a login shell starts, three files are searched to find scripts
that establish preferences, options, and environment variables,
in this order

� /etc/profile - system-wide profile script, establish default,
standard values in environment variables, say

� $HOME/.profile - user-specific profile script, if one exists

� Any file named in the ENV variable (must be set from one of
the two scripts above)

Copyright � 2012 by Steven H. Comstock 16 z/OS Shell

Running the UNIX Shells, continued

� An application is considered to be a "UNIX application" if it uses
services from the z/OS UNIX kernel

� This can be done directly through calls to BPX1... services from
Assembler, COBOL, PL/I, C, C++, and other languages

� This can be done indirectly by using a shell

A shell provides:

� Setup for stdin, stdout, and stderr - assigning these to file
descriptors 0, 1, and 2, respectively, and managing these files
automatically (i.e.: doing open on startup and close when the
shell is exited)

� Facilities to work with local and environmental variables

� A large number of commands and utilities that make it easy to
use kernel services

� Facilities for passing arguments, parsing statements, specifying
patterns ("regular expressions"), and evaluating arithmetic, string,
and logical expressions

� Facilities for running user-written programs / commands / utilities
and scripts

� Conditional logic and looping capabilities

� Organization / coordination of terminals, processes, sessions,
and groups

Copyright � 2012 by Steven H. Comstock 17 z/OS Shell

Running the UNIX Shells, continued

� So "running under the shell" means

� Starting a shell and requesting that the shell run an application
under its environment

� Note: you can run a shell in traditional z/OS batch by executing
program BPXBATCH from JCL (more later)

� z/OS applications that use UNIX kernel services may be able to run
without a shell, but that is discussed in a separate course

� To do more advanced work with shells, we need to understand a
number of terms and concepts, such as "process", "session", and
so on

� We address that next

Copyright � 2012 by Steven H. Comstock 18 z/OS Shell

Shells and Processes and Such

� The basic unit of work in a UNIX environment is a process

� A process is, essentially, an address space where a program is
running

� A shell is an executable program, running in an address space,
that creates an environment for processing commands

� The environment consists of functions, virtual storage,
environment variables, settings, and files

� When run as a login shell, the login work establishes the initial
environment (based on profile scripts discussed earlier) then the
shell work consists of reading from stdin and responding to what
is found there

� The shell itself, we say, is a process or runs in a process

� Each process has an identifier, the process ID (PID) - an integer
assigned by the kernel

� A shell can be a login shell (profile scripts are run), or not (profile
scripts are not run)

� A shell can be an interactive shell (where stdin must be a terminal),
or not (stdin can be a file)

� A login shell, however, is an interactive shell

Copyright � 2012 by Steven H. Comstock 19 z/OS Shell

Pseudo-Terminals

� When a user logs into UNIX, a pseudo-terminal (ptty) is created

� The ptty (a sort of logical terminal or conceptual terminal) is
used since a real terminal might be running multiple sessions,
so each session can be mapped to a separate ptty

Copyright � 2012 by Steven H. Comstock 20 z/OS Shell

user

� � �

ptty ptty

session session

real terminal

Sessions

� You always start with two sessions: one for the terminal controller
(omvs or telnet) and one for the shell process itself

� We pretty much ignore the controller session: when the last shell
process ends, the controller session is terminated too

� An OMVS user can create multiple shell sessions ...

� As part of the OMVS command (specify the
sessions(number_of_sessions) parameter)

� Or by issuing the OMVS subcommand OPEN

� This is multiple sessions using a single login

� A telnet or rlogin user can login multiple times from the same or
different terminals

� This is multiple logins with a single shell session each

� In both cases, there is a ptty for each separate shell session

� So, then: a shell reads from a ptty, looking for commands to process
in stdin, writing results to stdout and / or stderr

Copyright � 2012 by Steven H. Comstock 21 z/OS Shell

Sessions and Process Groups

� A session is composed of one or more process groups

� Every process belongs to a process group, and each process group
has an identifier, the process group ID (PGID), which is the same as
the PID of the first process in the process group

� This first process in a process group is called the process group
leader

� Generally, each command or script will run in its own process

� This is called a child process, and the process that creates the
child is called a parent process

� Every process has a Parent Process ID (PPID) which identifies
the process that is its parent

� Each child process may belong to its own process group

� Note that sometimes a command can run in the same process as
its parent process (usually for performance reasons)

� When a script is started, its commands run as separate processes in
a single process group

� A new process group can also be created through program calls to
kernel services, not discussed in this course

Copyright � 2012 by Steven H. Comstock 22 z/OS Shell

More Sessions

� A session, then, is a collection of process groups that share a ptty
for input and output (stdin, stdout, stderr)

� Every process group in the session has the ptty as its controlling
terminal

� The process that creates the session (usually the login shell) is
called the session leader

� Once the session leader process ends, no other process in the
session can communicate with the ptty (although they may
continue to run)

� Every session has an identifier, the session ID (SID)

� Initially, there is a single session containing a single process
group containing a single process

� Or, if omvs was invoked with sessions(n), there are n sessions,
each containing a single process group that contains a single
process

� An existing process can invoke setsid() (C,C++) or call BPX1SSI
(other languages) and that process becomes the session leader
in a new session

� This is what the OMVS OPEN subcommand does

Copyright � 2012 by Steven H. Comstock 23 z/OS Shell

UNIX Jobs

� A UNIX job is a set of processes in the same process group

� A job may run in the foreground (interacting with the ptty) or the
background (running independently of other process groups in
your session)

� A background job is started by entering a command or script
name on the command line followed by whitespace then an
ampersand (&)

� For example: myscript &

� When a background job is started, the shell creates a new process
in a new process group in the current session and runs the
command or script in that process

� Such a process group is called a [UNIX] job, and each job is
assigned an identifier, the job ID (job-identifier)

� This job identifier is displayed for you when you start the job

� The job runs with no intervention, asynchronously to other
process groups (you are able to continue working, not needing
to wait for a job to finish to enter more commands)

� Note that a UNIX job is not the same thing as a z/OS batch job

� More on UNIX jobs in a later section

Copyright � 2012 by Steven H. Comstock 24 z/OS Shell

Session Hierarchy

� So the organizational hierarchy is

user (uid)

session (sid)

process group (pgid)

process (process group leader, session leader) (ppid, pid)

process (ppid, pid)

.

.

.

process group (pgid)

process (process group leader) (ppid, pid)

process (ppid, pid)

.

.

.

session (sid)

process group (pgid)

process (process group leader, session leader) (ppid, pid)

process (ppid, pid)

.

.

.

� Finally, there is one more level to be aware of: a thread

� That is, each process is always running one or more threads: the
thread is the level of execution control

� Note that in other UNIXes, threads may or may not be present,
but in z/OS UNIX each process always has at least one thread

� Of course, each thread has a thread ID (TID)

Copyright � 2012 by Steven H. Comstock 25 z/OS Shell

A Session, pictorially

� One or more of these process groups may be background jobs

� The significance of all this is one of scoping

� For example, the kill shell command can signal a job, a process,
or all processes in a process group

� If a session leader is terminated, no other processes in the
session can get to the ptty - but the processes can continue to
run

Copyright ����� by Steven H. Comstock 26 z/OS Shell

process group

process group

process group

•

•

•

session

ptty

controlling
terminal

Commands and Processes

� UNIX uses the term "executable" to mean a command, program, or
script

� Traditional z/OS users think of an executable as a load module
or program object

� When running under a shell, these are the ways to run an executable
under that shell:

� Issue a shell exec command followed by the name of the
executable to run (and optional parameters to pass)

� This causes the executable to replace the shell program, so
when the executable completes and exits, the shell and its
session ends

� Issue an sh command or tsch command, with flags and options
and the name of an executable to run (and optional parms to
pass)

� This causes a sub-shell to be created, the executable to be run
under the sub-shell, and on exit the sub-shell is removed and the
parent shell resumes control

� This is unlike a child shell, which runs independent of its parent
shell, in a separate process

� The sh command is discussed later

Copyright � 2012 by Steven H. Comstock 27 z/OS Shell

Commands and Processes, continued

� When running under a shell, these are the ways to run an executable
under that shell, continued:

� Enter a dot (.) followed by whitespace followed by the name of a
script (followed by optional parms)

� The script is run under the current shell; this is the only way a
script can set environment variables in the current process

� If you want to run a script in the current directory, and the
directory is not in the PATH, you can run using:

. ./script_name

� Enter the name of an executable (other than exec or the name of
a shell program) optionally followed by parameters

� If this is a shell built-in command, the command is executed in
the current shell environment

� Otherwise the shell issues a fork request (create a new process
that is a copy of the fork-ing shell) followed by an exec request
(replace the copy of the shell by the named executable)

� This is the standard / default processing

� Note that C programs can issue these kernel requests
internally, and other compiled or assembled languages can
call BPX1... services to accomplish the same thing, as
discussed a few pages ago

� If the command name contains a slash, the name is assumed to
be a pathname, absolute or relative, and the shell searches
there; otherwise the search is in the directories specified in the
PATH and / or FPATH environment variables (this order can be
changed by a shell flag)

Copyright � 2012 by Steven H. Comstock 28 z/OS Shell

Shell Commands: tty

� The tty command returns the name of the terminal currently
associated with stdin

Syntax

tty

� Typically what is returned is this string:

/dev/ttyp000
or

ttyp000

Copyright � 2012 by Steven H. Comstock 29 z/OS Shell

Shell Commands: sleep

� We introduce the sleep command here because it allows us to create
a process that lasts long enough for us to examine multiple process
and multiple session information

� In production scripts you often need to wait a period of time
before [re]trying some work

� The sleep command runs a do-nothing process for some number of
seconds

Syntax

sleep seconds

Where seconds is expressed as one of

� An integer, for example:

� sleep 500

� Labeled time, using h for hours, m for minutes, s for seconds,
for example (all these are valid):

� sleep 1h10m30s

� sleep 20m

� sleep 1h30s

Copyright � 2012 by Steven H. Comstock 30 z/OS Shell

Shell Commands: ps

� The ps command (process status) provides information on currently
running processes and, optionally, threads

� In the discussion that follows, the underlying assumption is that you
will only see information about processes and threads that your UID
is authorized to see

� Even when the notes refer to things like "all processes"

Syntax

ps [-Aadefjlm] [-G idlist] [-g pid_list] [-o format_spec] ...

[-p pid_list] [-s sessid_list] [-t term_list] [-{U|u} uid_list]

Where the options work this way

� a, A, e - display information on processes (e: accessible
processes; A: available processes; a - processes associated with
terminals); any combination, but a overrides A and e

� G, g, p, s, t, u, U - select processes based on process id(s),
session id(s), terminal id(s), and / or session id(s)

� f, j, l, o - specify predefined field lists (f, j, l) to display and
user-specified fields to display (o); (notice the ellipsis after -o;
you can specify multiple format items) (l is lower-case EL)

� d - display information for all processes except process group
leaders

Copyright � 2012 by Steven H. Comstock 31 z/OS Shell

Shell Commands: ps, continued

Syntax, repeated

ps [-Aadefjlm] [-G idlist] [-g pid_list] [-o format_spec] ...

[-p pid_list] [-s sessid_list] [-t term_list] [-{U|u} uid_list]

Where, continued

� m - display thread status information

� G idlist - idlist is a list of group IDs; the entries are separated by
spaces or commas; the ps command will display information
about processes with these real GIDs

example: ps -G 12, 32

� g pid_list - pid_list is a list of process IDs; the entries are
separated by spaces or commas; the ps command will display
information about processes with these PIDs

example: ps -g 92, 134

� p pid_list - works the same as g pid_list

� s sessid_list - sessid_list is a list of session IDs; the entries are
separated by spaces or commas; the ps command will display
information about processes with these SIDs

� t term_list - term_list is a list of terminal IDs; the entries are
separated by spaces or commas; entries are either filenames of
the device (e.g.: tty04) or if the filename begins with tty, just the
characters after the tty (e.g.: 04)

Copyright � 2012 by Steven H. Comstock 32 z/OS Shell

Shell Commands: ps, continued

Syntax, repeated

ps [-Aadefjlm] [-G idlist] [-g pid_list] [-o format_spec] ...

[-p pid_list] [-s sessid_list] [-t term_list] [-{U|u} uid_list]

Where, continued

� U uid_list - uid_list is a list of user IDs; the entries are separated
by spaces or commas; the entries may be numbers or login
names; the ps command will display information about processes
with these UIDs

� Note: you can specify either case: U and u are the same

� In z/OS V1.7, a new flag was added: -n name, where name is the
name of the executable file containing the kernel symbol table -
then the doc says this feature is not supported(!)

Copyright � 2012 by Steven H. Comstock 33 z/OS Shell

Shell Commands: ps, continued

Syntax, repeated

ps [-Aadefjlm] [-G idlist] [-g pid_list] [-o format_spec] ...

[-p pid_list] [-s sessid_list] [-t term_list] [-{U|u} uid_list]

Where, continued

� o format_spec - which fields to be displayed and the column
headers for the fields

Format specifications

� The first line of ps output contains column headings for each
status field; each field has a default heading (shown in brackets
below)

� There is a list of available fields to display; simply key in the list
of field names you want to see, separated by commas or spaces

� If the entries in the list are separated by spaces, you may need
to put the whole string in single quotes

� To override the default column heading for a field, after the
fieldname code =value where value is the string you want to use
for the heading

� The appearance of a user-specified column heading must be the
last in any list of fieldnames, and if you want to request
additional fields they must be specified with separate -o options

Copyright � 2012 by Steven H. Comstock 34 z/OS Shell

Shell Commands: ps, continued

� The fields that can be displayed by the ps command may be
grouped into three classes

� Process only - values are only meaningful for processes; if the
item being displayed is a thread, it will have dashes for a value

� Thread only - values are only meaningful for threads; if the item
being displayed is a process, it will have dashes for a value

� Process and Thread both - the field is meaningful for both
processes and threads

� We discuss each collection of fields separately then give a series of
examples

� The names are case sensitive

� The order you request them is the order the fields will display

� Remember the default heading is shown in brackets after the
description

Copyright � 2012 by Steven H. Comstock 35 z/OS Shell

Shell Commands: ps, continued

� Fields only meaningful for processes:

� addr - address of the process; not currently supported; will
always have a value of a dash [ADDR]

� args - displays the command that is running, with all its
arguments [COMMAND]

� atime - CPU time used by this process since it started; in format:
{days d hrs | hrs h min | min:sec} [TIME]

� attr - displays process attributes B (blocking shudowns), P

(permanent; survives across shutdowns); R (will restart on end;
introduced in z/OS 1.8); T (tracing is active; z/OS 1.11) [ATTR]

� comm - name of the command running, without its arguments
(right padded if necessary) [COMMAND]

� etime - elapsed [wall] time since the process started running in
the format [[dd-]hh:]mm:ss [ELAPSED]

� gid - effective group ID of the process [EGID]

� group - effective group ID of the process, as a name, if possible,
otherwise as a decimal GID [GROUP]

� jobname - the z/OS jobname [JOBNAME]

� nice - the nice value (priority or urgency) of the process; not
currently supported; will always show as a dash [NI]

Copyright � 2012 by Steven H. Comstock 36 z/OS Shell

Shell Commands: ps, continued

� Fields only meaningful for processes, continued:

� pcpu - percentage of available CPU time this process has taken;
not currently supported; will always show as a dash [%CPU]

� pgid - process group id (PGID) in decimal [PGID]

� pid - process id (PID) in decimal [XPID]

� ppid - parent process id (PPID) in decimal [PPID]

� pri - process priority; not currently supported; will always show
as a dash [PRI]

� rgid - real group id of the process [GID]

� rgroup - real group id of the process, as a name if possible,
otherwise as an integer [RGROUP]

� ruid - real user id of the process [UID]

� ruser - real user id as a name, if possible, otherwise use an
integer [RUSER]

� sid - session id of the process [SID]

� stime - start time of the process [STIME]

� thdcnt - total number of threads in the process [THCNT]

Copyright � 2012 by Steven H. Comstock 37 z/OS Shell

Shell Commands: ps, continued

� Fields only meaningful for processes, continued:

� time - same as etime [TIME]

� tty - name of the controlling terminal, if any [TT]

� uid - effective user id of the process [EUID]

� user - effective user id of the process as a name if possible,
otherwise as an integer [USER]

� vsz - amount of virtual storage used by the process as a decimal
number of KB [VSZ]

� vszlmt64 - maximum virtual storage allowed above the bar
[VSZLMT64]

� vsz64 - actual virtual storage used above the bar [VSZ64]

� wchan - channel the process is waiting on; not currently
supported; will always show as a dash [WCHAN]

� xasid - address space id in hex [ASID]

� xpgid - process group id in hex [XPGID]

� xpid - process id in hex [XPID]

� xppid - parent process id in hex [XPPID]

Copyright � 2012 by Steven H. Comstock 38 z/OS Shell

Shell Commands: ps, continued

� Fields only meaningful for threads:

� lpid - latch pad waited for [lpid]

� lsyscall - last five syscalls (four character syscalls with no
delimiter as a 20 character string) [LASTSYSC]

� semnum - semaphore number thread is waiting on (or dash, if
none) [SNUM]

� semval - semaphore value thread is waiting on (or dash, if none)
[SVAL]

� sigmask - signal pending mask in hex [SIGMASK]

� syscall - current syscall [SYSC]

� tagdata - tag assigned to the thread (or dash, if none)
[TAGDATA]

� wtime - time thread has been waiting in the format {days d hrs |
hrs h min | min:sec} [TIME]

� xtcbaddr - tcb address in hex [TCBADDR]

� xstid - low order word of thread id in hex [STID]

� xtid - thread id in hex [TID]

Copyright � 2012 by Steven H. Comstock 39 z/OS Shell

Copyright � 2012 by Steven H. Comstock 40 z/OS Shell

Shell Commands: ps, continued

� Fields meaningful for both processes and threads:

� state - process / thread state as string of characters [STATE]

� flags - process / thread state as a hex value, where individual bits
correspond to specific state values [F]

State value Bit equivalent (hex) Meaning

1 00 00 00 10 single task using callable services
A 80 00 00 00 message queue receive wait
B 40 00 00 00 message queue send wait
C 20 00 00 00 communication system kernel wait
D 10 00 00 00 semaphore operation wait
E 08 00 00 00 quiesce frozen
F 04 00 00 00 file system kernel wait
G 02 00 00 00 MVS pause wait
H 01 00 00 00 one or more pthread tasks
J 00 40 00 00 pthread created
K 00 20 00 00 other kernel wait
M 00 08 00 00 multi-thread
N 00 04 00 00 medium weight thread
O 00 02 00 00 asynchronous thread
R 00 00 40 00 running (not kernel wait)
S 00 00 20 00 sleeping
U 00 00 08 00 initial process thread
V 00 00 04 00 thread is detached
W 00 00 02 00 waiting for a child
X 00 00 01 00 creating a new process
Y 00 00 00 80 MVS wait
Z 00 00 00 40 canceled and parent has not

performed wait - a Zombie task

Shell Commands: ps, continued

Examples

ps -e -otty,group,pgid,pid,ppid,sid,comm

ps -e -o tty,group,pgid,pid,ppid,sid,comm

ps -e -o tty group pgid pid ppid sid comm

� Requests the display of a collection of fields for all accessible
processes

� Note that all three of these commands are equivalent

ps -e -otty,group=GroupName -osid=Session

� Requests, for all accessible processes, the name of the
controlling terminal, the group id with a column heading of
GroupName, and the session id with a column heading of
Session

� Note that adding the user header (=GroupName) required that
any additional parameters start with a new -o flag

Copyright � 2012 by Steven H. Comstock 41 z/OS Shell

Shell Commands: ps, continued

Special values

� Earlier (see page 31) we mentioned that flags f, j, and l cause
predetermined sets of format options to be used, so here they
are:

� -f is the same as

-o ruser=UID -o pid,ppid,pcpu=C -o stime,tty=TTY -o atime,args=CMD

� -j is the same as

-o pid,sid,pgid=PGRP -o tty=TTY -o atime,args

� -l (lower-case EL) is the same as

-o flags,state,ruid=UID -o pidppid,pcpu=C -o pri,nice,addr,vsz=SZ
-o wchan,tty=TTY -o atime,comm=CMD

� omitting any format (that is, not specifying any of o, f, j, and l) is
the same as

-o pid,tty=TTY -o atime,comm

Copyright � 2012 by Steven H. Comstock 42 z/OS Shell

Shell Commands: uname

� The uname command returns information on the current operating
system you are running under

Syntax

uname [-aImnrsv]

Where

� a - requests all fields

� I (upper case i) - provides system name, release, and version
levels relative to z/OS (if omitted this information is provided
relative to OS/390)

� m - request machine type

� n - requests node name

� r - requests release number

� s - requests operating system name (default if no operands
specified)

� v - requests version number

Sample output from: uname -aI:

z/OS S0W1 13.00 01 2094

Copyright � 2012 by Steven H. Comstock 43 z/OS Shell

Computer Exercise: Shells, Sessions, and Processes

Get into OMVS - be sure to include sess(3) on the omvs command, to start
out with three sessions. Or telnet into the system three times. Or use some
combination of OMVS and telnet to get three sessions going.

1. Issue a tty command in each session (use the NextSess function
key to swap among omvs sessions.); note the differences, if any.

2. Issue a ps command; display the address space id in hex, the tty, the
process id, the process group id, the parent process id, the session id, the
related command (no arguments) being processed, and the jobname, for
all accessible processes;

examine the output; see what processes belong to which session and
process groups; note the tty assignments to sessions; Note that you
have one session that has two pid's (one for the shell and one for the ps
command) sharing the ttyp0000, and two other sessions with just the
shell running (using ttyp0001 and ttyp0002); also notice that the tty
assigned to omvs and telnet displays as a question mark (?);

3. Issue this command string:

sleep 45 ; sleep 45 ; sleep 45

then switch to a different session and re-issue the ps command from 2)
above; examine the results, looking for the groupings of sessions,
processes, and process groups.

4. Re-issue the sleep command string followed by a space and an
ampersand (&); are the results the same when you switch to another
session and re-issue the ps command from 2)?

5. Issue the uname command and find out what version of operating
system you're running.

6. As time permits, experiment with other options of the ps command,
to see real examples of the information available.

Copyright � 2012 by Steven H. Comstock 44 z/OS Shell

