
Developing Applications for z/OS UNIX

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, AS/400, BookManager, CICS, COBOL/370, COBOL for MVS and VM, COBOL for OS/390 &
VM, DATABASE 2, DB2, DB2 Universal Database, DFSMS, DFSMSds, DFSORT, IBM, IBMLink,
IMS, Language Environment, MQSeries, MVS, MVS/ESA, MVS/XA, NetView, NetView/PC, OS/400,
PR/SM, OpenEdition MVS, OS/2, OS/390, OS/400, Parallel Sysplex, QMF, RACF, RS/6000,
SOMobjects, System/360, System/370, System/390, S/360, S/370, S/390, System Object Model,
TSO, VisualAge, VisualLift, VTAM, WebSphere, z/OS, z/VM, z/Architecture, zSeries, z9

Trademarks of Microsoft Corp.: Microsoft, Windows, Windows NT, Visual Basic, Microsoft
Access, MS-DOS, Windows XP

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Crystal Computer Services: Crystal Reports

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

Developing Applications for z/OS UNIX - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Create programs written in COBOL, PL/I, C, or Assembler that;

a. are compiled and bound under z/OS batch or a z/OS UNIX shell

b. run in batch or from a shell script and that can ...

c. work with z/OS files and files in the Hierarchical File System (HFS)

d. interact with users at a z/OS UNIX terminal

e. dynamically call subroutines that are located in a z/OS library or an
HFS directory

2. Compile and bind C programs using c89, or Assemble and bind programs
using c89, or Assemble programs using the as command, or compile
and bind COBOL programs using cob2 or compile and bind PL/I programs
using pli

3. Bind programs using the ld command

4. Code programs in C, COBOL, PL/I or Assembler that invoke common C
functions to accomplish work, when that is the best way to get the task done

5. Code programs in C, COBOL, PL/I or Assembler that invoke common kernel
services to accomplish work, when that is the best way to get the task done

6. Code programs in C, COBOL, PL/I or Assembler that create, set, access,
and update environment variables, and that access the parm data passed to
a main program

7. Build and use makefiles to manage an application.

1

U520 / 3 Days These Materials Copyright � 2013 by Steven H. Comstock V5.2

Developing Applications for z/OS UNIX - Topical Outline

Day One

Introduction
Applications for z/OS UNIX
Setting the stage: A Level Set
Setting the stage: Skills to Acquire
The Ubiquitousness of C
Computer exercise: Class Lab Set Up .. 18

File Access in z/OS UNIX Applications
What We Already Know
C functions for accessing QSAM and HFS files
COBOL - QSAM access
COBOL - native access to HFS files
PL/I - accessing QSAM and HFS files
Assembler - accessing QSAM and HFS files
Computer exercise: Accessing HFS files under OMVS 55

Interacting with the user at the OMVS terminal
COBOL - Using DISPLAY and ACCEPT
PL/I - Using PUT LIST and GET EDIT
C printf() and scanf() functions - an introduction
The CALL interface
Function references
Interpreting C language descriptions
Computer exercise: Using printf() and scanf() - C programmers 79

Calling C functions from COBOL
General notes
fopen(), fread(), fwrite(), fclose(), printf(), scanf()
Computer exercise: Using printf() and scanf() - COBOL programmers . 98

Calling C functions from PL/I
General notes
fopen(), fread(), fwrite(), fclose(), printf(), scanf()
Computer exercise: Using printf() and scanf() - PL/I programmers 121

2

U520 / 3 Days These Materials Copyright � 2013 by Steven H. Comstock V5.2

Developing Applications for z/OS UNIX - Topical Outline, p.2.

Calling C functions from Assembler
General notes
fopen(), fread(), fwrite(), fclose(), printf(), scanf()
Computer exercise: Using printf() and scanf() - Assembler programmers ... 142

Day Two

Compiling / Assembling, and binding Under OMVS
Compiling and binding under OMVS
Archive libraries
Shell commands: ar
C370LIBs
Shell commands: c89
Computer Exercise: Using c89 to compile and bind 178
Computer Exercise: Using c89 to Assemble and bind 180

Assembling - a new alternative
The as command
Computer Exercise (Optional): Using as to Assemble............................ 189

Compiling COBOL and binding executables
Shell commands: cob2
Computer Exercise: Using cob2 to Compile and bind 204

Compiling PL/I and binding executables
Shell commands: pli
Computer Exercise: Using pli to Compile and bind 217

Binding: The ld command
Shell commands: ld
Computer Exercise (Optional, Assembler programmers): Bind a program .. 230

3

U520 / 3 Days These Materials Copyright � 2013 by Steven H. Comstock V5.2

Developing Applications for z/OS UNIX - Topical Outline, p.3.

Introduction to Callable UNIX services
Dynamic calls
Callable UNIX services
The BPX1LOD service
Assembler calling BPX1LOD
COBOL calling BPX1LOD
PL/I calling BPX1LOD
C calling BPX1LOD
A selection fo callable services
BPX1 services, concluded
Computer Exercise: Dynamic calls 247

Day Three

Parms and Environment Variables
How the PARM field is set up
Accessing the PARM field - Assembler
Accessing the PARM field - COBOL
Accessing the PARM field - PL/I
Accessing the PARM field - C
Accessing the PARM field using CEE3PRM and CEE3PR2
Parms for subroutines
The PARM set up under the shell
Accessing the parm from a program run under the shell
Determining the Environment (CEE3INF)
Using Environment Variables Under the Shell
C functions clearenv(), getenv(), putenv(), setenv()
Using the CEEENV callable LE service
Computer Exercise: Working With Environment Variables 290

Managing Applications: Scripts and make
Application management
Using shell scripts for application management
make - the big picture
Introduction to makefiles
Makefiles by example
Computer Exercise: Basic Makefiles .. 326

4

U520 / 3 Days These Materials Copyright � 2013 by Steven H. Comstock V5.2

Developing Applications for z/OS UNIX - Topical Outline, p.4.

Archive files and make syntax
Archive files and make
Target attributes
Designing makefiles
Recursive make
Include files for make
Special target directives
The syntax for make
Computer Exercise: Combining makefiles ... 357

More on make
Target lines: rule operators
Runtime macros
Command line prefixes
Group recipes
Special target directives, revisited
Macro modifiers
Conditionals
Conclusion

5

U520 / 3 Days These Materials Copyright � 2013 by Steven H. Comstock V5.2

This page intentionally left almost blank.

6

U520 / 3 Days These Materials Copyright � 2013 by Steven H. Comstock V5.2

z/OSUNIXApplications

Copyright � 2013 by Steven H. Comstock 7 z/OS UNIX Applications

Section Preview

� Introduction

� Applications for z/OS UNIX

� Setting the Stage: A Level Set

� Setting The Stage: Skills To Acquire

� The Ubiquitousness of C

� Class Lab Set Up (Machine Exercise)

Applications for z/OS UNIX

� This class is part of a journey

� A trip starting in the landscape of classic mainframe applications
environment

� COBOL, PL/I, Assembler, C

� REXX, CLIST

� Batch / CICS / TSO

� Continuing through the waystations of getting current in these
classic, evolving, technologies

� Reaching a destination of skills to apply and extend the classic
applications to your corporate Intranet, the Internet, and the
World Wide Web (IIWWW, pronounced "eee-whew")

� The applications we are interested in are traditional (for example,
inventory, accounting, human resources) but are run in a new way

� Continuously available, constantly updated, widely shared (yet
secured against inappropriate use and malicious damage)

� We are also interested in new applications, that is applications
involving the internet and the web, and this class lays the
foundations for developing those apps

Copyright � 2013 by Steven H. Comstock 8 z/OS UNIX Applications

Applications for z/OS UNIX, 2

� What does it mean to say that an application is "a z/OS UNIX
application"? Any or all of ...

� The application accesses HFS files

� The application uses z/OS UNIX services

� The application runs "under" z/OS UNIX in one of the following
ways

� As a program or script (shell script, REXX exec, Perl, etc.)
submitted as a batch job by running BPXBATCH

� As a command or script invoked from an OMVS, telnet, or rlogin
session

� As a command or script scheduled by the cron daemon or other
scheduling software

� For an application on the mainframe to work in the IIWWW
environment, the app will have to be a z/OS UNIX application in the
above sense

� So we build on our prerequisite material and extend your
language skills in this course as part of our journey

Copyright � 2013 by Steven H. Comstock 9 z/OS UNIX Applications

Applications for z/OS UNIX, 3

� In this class, we will start with some programs compiled under z/OS
and then run them under z/OS UNIX

� Accessing z/OS files first, then HFS files

� We will explore how calling C functions (even from Assembler,
COBOL, and PL/I programs(!)) can help implement z/OS UNIX
applications

� We will explore compiling and binding programs under an OMVS
session

� Using commands, then scripts, then make

� We explore using some of the callable z/OS UNIX kernel services
that might be of interest

� Mostly to get familiar with how to use these services and a
general picture of what services are available

Copyright � 2013 by Steven H. Comstock 10 z/OS UNIX Applications

Setting The Stage: A Level Set

� In the prerequisite courses, we covered these topics:

� Copying executables into the HFS using OPUT and OPUTX

� Recall that OPUT will copy executables without change, but may
give warning messages if the executable is a load module (no
messages if the executable is a program object in a PDSE)

� OPUTX always does a re-bind of an executable

� For example, from ispf 6 issue a simple command like this:

==> oput tr.pdse(app2a) '/u/scomsto/bin/app2a'

� Running under OMVS, you can execute programs stored in PDSs
or PDSEs by using a symbolic link and setting the sticky bit on

� Recall this series of commands:

� ln -s dumbpgm app1c1

� touch dumbpgm

� chmod 1755 dumbpgm

� export STEPLIB=DEPT.TR.PDSE

� app1c1

� Compiled programs run under the shell must be reentrant or you
must first set the environment variable _BPX_PTRACE_ATTACH
to YES (export _BPX_PTRACE_ATTACH=YES)

Copyright � 2013 by Steven H. Comstock 11 z/OS UNIX Applications

Setting The Stage: A Level Set, 2

� Running under OMVS, you can execute program objects in the
HFS by simply issuing the name of the program

� However, if the program expects DD statements, you must first
issue allocate commands using the tso command prefix (we did
not examine this fact earlier)

� These commands may be entered one at a time or in a script;
an example from the z/OS UNIX command line:

tso "alloc fi(indd) da('stnt.tr.zinputx') shr reu"
tso "alloc fi(reprt) da(myreprt) old reu"
appxxx

� Some other points about running programs under OMVS:

� Files cannot be allocated to SYSOUT; you need to specify a
z/OS file or an HFS file

� Allocation commands are not inherited by a child process, so you
must make sure spawn will try to use the current address space
by starting OMVS with the SHAREAS option (the default) or
exporting _BPX_SHAREAS with a value of YES:

export _BPX_SHAREAS=YES

� For WTO outputs to display at the terminal you need to export
the environment variable _BPXK_JOBLOG with a value of 1:

export _BPXK_JOBLOG=1

Copyright � 2013 by Steven H. Comstock 12 z/OS UNIX Applications

Setting The Stage: A Level Set, 3

� Existing programs that reference standard sequential and VSAM
data sets can run against HFS files with no change in code

� Simply change DD statements to use these parameters:

� DSNTYPE

� FILEDATA

� PATH

� PATHDISP

� PATHMODE

� PATHOPTS

� In addition to specifying DCB parameters where required by
OPEN

� Note that this does not support random access, record deletions,
or changing record size

� COBOL programs can be modified to dynamically allocate files (z/OS
files or HFS files); see our course D704: Enterprise COBOL Update for
details

Copyright � 2013 by Steven H. Comstock 13 z/OS UNIX Applications

Setting The Stage: A Level Set, 3

� Recall that you can run UNIX shell scripts or executables using the
BPXBATCH and BPXBATSL programs in a batch job

� With executables residing in the HFS

� DD statements can be set up for z/OS and HFS files, including
stdin, stdout, stderr, and stdenv

� Additional steps can transcribe stdout and stderr files to the JES
SPOOL (SYSOUT files)

Copyright � 2013 by Steven H. Comstock 14 z/OS UNIX Applications

Setting The Stage: Skills To Acquire

� z/OS UNIX applications are likely to need to use these techniques:

� Reading / writing / updating z/OS files, HFS files, and relational
data bases (DB2, Oracle, ...)

� Interacting with the z/OS UNIX user at the terminal

� Receiving requests (transactions) from users in XML or CGI
formats

� Responding to requests in XML or HTML or XHTML formats

� Converting data between encoding schemes (EBCDIC, ASCII,
Unicode)

� Some of these techniques are discussed in other courses

� In this course we focus on working with files and interacting with
the z/OS UNIX user

� With added focus on necessary development / deployment skills
(compiles, binds, makefiles, and the like)

Copyright � 2013 by Steven H. Comstock 15 z/OS UNIX Applications

The Ubiquitousness of C

� In many senses, the C programming language is the language of
UNIX and of the Internet

� C is based on building up complex functions from simple
functions

� C works easily with networks, transmission streams, and HFS
files

� To interact with UNIX terminal users, to process HFS files, and to do
other tasks useful in the IIWWW environment, using existing
features from other programming languages is not always possible

� Accomplishing these tasks in COBOL, PL/I, or Assembler may
sometimes require calling some combination of

� LE (Language Environment) services

� C functions

� z/OS UNIX kernel functions / services

� Sometimes more than one of these options can get the job done

� Here we focus on using relevant C functions and kernel services
where they can be useful

� Which means we will be discussing how to invoke these facilities
directly from COBOL, PL/I, C, and Assembler programs

Copyright � 2013 by Steven H. Comstock 16 z/OS UNIX Applications

The Ubiquitousness of C, 2

� So why not just use C for everything? There are a number of
reasons:

� Since existing application code is already written in other
languages, you can leverage existing code by integrating C
functionality where it makes sense

� No need to even write a C subroutine: just call the necessary C
functions

� C programming skills are not widely available in the mainframe
world

� But COBOL, PL/I, and Assembler skills are - so use the
resources available

� C is a terse language, not particularly self-documenting, and
easily mis-understood

� It is not everyone's cup of tea

� So we will emphasize C functions we can use in our immediate (and
later) tasks, and how to invoke these functions from programs
written in C and from programs written in other languages

� Note: C programs run under the shell must be AMODE31 or
AMODE64, and the SCEERUN library must be available; this is also
true for programs that call C functions

Copyright � 2013 by Steven H. Comstock 17 z/OS UNIX Applications

Computer Exercise: Class Lab Set Up

1.) To set up for the lab requires some work. First, from ISPF option 6 issue
this command:

===> ex '___________.train.library(u520strt)' exec

This will invoke a small dialog to create some files we will use for later
exercises. The first thing you will see is a prompt for the high level qualifier to
use for the data set names; it is set to be your TSO id and this is probably
OK. In any case, set the value you want and press <Enter>. At this point the
files you need will be created. The file names will begin with your high level
qualifier (<hlq>) followed by TR:

<hlq>.TR.CEEDUMP (space for dump file - just in case)
<hlq>.TR.CNTL (PDS for JCL)
<hlq>.TR.COBOL (PDS for COBOL source)
<hlq>.TR.LIBRARY (PDS for source code and some data)
<hlq>.TR.PDSE (PDSE for executable programs)
<hlq>.TR.REPRT (space for output file)
<hlq>.TR.ZINPUTX (data file)

2.) Next you need to unwind a pax file with scripts we will need later. Get into
omvs in your home directory and issue this command:

pax -rf "//tr.library(u520pax)"

If this is successful you will have app2, data, bin, and scripts subdirectories
created, with some of these having files in them. We will talk about these as
we need them.

3.) Now exit from omvs; in ISPF get into option 3.4 and list your class files; in
your TR.CNTL library, submit one of these jobs, depending on what language
you prefer to work in:

UCOMPA for Assembler
UCOMPC for C
UCOMPCO for COBOL
UCOMPP for PL/I

Which ever job you run will compile (or assemble) and bind a source
program into your TR.PDSE library.

Copyright � 2013 by Steven H. Comstock 18 z/OS UNIX Applications

Computer Exercise: Class Lab Set Up, p. 2.

4.) Again in your TR.CNTL library, submit one of these jobs, which will
run the appropriate program and access your z/OS file TR.ZINPUTX
and produce a report:

URUNA1 for Assembler
URUNC1 for C
URUNCO1 for COBOL
URUNP1 for PL/I

The expected output is the same for all programs, and a subset
is reproduced on the next page.

5.) Finally, in your URUNxx member, replace the ZINPUTX DD statement
to point to your data/zinputx file under your home directory; something
like this:

//ZINPUTX DD PATH='/u/xxxxxx/data/zinputx',PATHOPTS=ORDONLY,
// FILEDATA=BINARY,RECFM=F,LRECL=100,BLKSIZE=100

and run the job again; the results should look the same.

The program names are:

APP2A Assembler
APP2C C
APP2CO COBOL
APP2P PL/I

the source code for each of these is available in Appendix A of this book.

Copyright � 2013 by Steven H. Comstock 19 z/OS UNIX Applications

Computer Exercise: Class Lab Set Up, p. 3.

Expected output:

On the SYSOUT data set:

Got to main program APP2x
Leaving program APP2x

� Where x is the programming language indicator

On the REPRT data set:

PART03105 Final Flatulence 35 10.750 376.25

PART03108 Giggling Gigolos 35 10.900 381.50

PART03111 Marginal Magicians 35 11.050 386.75

.

.

.

PART03732 Rounding Errors 240 42.100 10,104.00

PART03735 Founding Bearers 245 42.250 10,351.25

PART03738 Noisy Smells 245 42.400 10,388.00

Copyright � 2013 by Steven H. Comstock 20 z/OS UNIX Applications

FileAccess

Copyright � 2013 by Steven H. Comstock 21 File Access

Section Preview

� File Access in z/OS UNIX Applications

� What We Already Know

� C functions for accessing QSAM and HFS files

� COBOL - QSAM access

� COBOL - native access to HFS files

� PL/I - accessing QSAM and HFS files

� Assembler - accessing QSAM and HFS files

� Accessing HFS files under OMVS (Machine
Exercise)

What We Already Know

� In earlier training or experience you have certainly discovered these
facts:

� Classic applications can access z/OS files using JCL

� The role of JCL is to locate data and tie it to the program while it
runs

� These same apps can access HFS files using JCL

� If the file access is restricted to sequential processing of text files

� Accessing HFS files with non-text data (for example, packed
decimal, binary, floating point) is a bit trickier

� You may or may not be familiar with this information:

� C programs can access z/OS files and HFS files natively with the
same code in batch, under TSO, and under omvs

� COBOL programs can access HFS files natively using line
sequential file types, but COBOL cannot use a single FD to
access both z/OS files and HFS files natively

� PL/I programs can access HFS files using the TITLE option of
open or by exporting an environment variable named DD_ddname

� Assembler programs cannot natively access HFS files at all
using classic macro interfaces

Copyright � 2013 by Steven H. Comstock 22 File Access

C Functions For Accessing QSAM and HFS Files

� There are, of course, lots of details, options, special cases, and so
on - we keep it simple here and trust you can look these up in the
docs as you need them

� As with other languages, a C program must declare a variable that
will be used to reference a file, something like this:

FILE *zinputx;
FILE *reprt;

Notes

� For those not familiar with C, C is case sensitive, so
capitalization matters everywhere

� The above statements tell the compiler you are working with two
file variables

� The variable named zinputx is a pointer to a FILE "thing"

� The variable named reprt is a pointer to another FILE "thing"

� the asterisk says "is a pointer to the preceding type"

Copyright � 2013 by Steven H. Comstock 23 File Access

C Functions For Accessing QSAM and HFS Files, 2

� To open a file in C, you usually invoke the fopen() function

� This function has two arguments

� A file specification

� Open options, coded as a character string

� And it returns a single value:

� The address to put into the variable that is supposed to point to
the FILE "thing"

� Special case: if the returned value is 0, the open was not
successful

� Note: to test if an address is 0, you check to see if the
value is NULL (reserved word)

Copyright � 2013 by Steven H. Comstock 24 File Access

C Functions For Accessing QSAM and HFS Files, 3

� The prototype for fopen() in the documentation is:

FILE *fopen(const char *filename, const char *mode);

� Which can be read:

� the fopen() function returns the address of a FILE "thing", and
takes two arguments, each a pointer to a constant character
string

� Thus, you could code:

zinputx = fopen(file_name, file_options);

� This would invoke the function, passing the arguments, and
return the value into our variable which is supposed to hold the
address of a FILE thing

� Then we could test the value in zinputx to see if it is zero
(NULL) or not

� But C programmers inevitably combine this into a single
statement, like:

if ((zinputx = fopen(filespec, fileoptions)) == NULL)
{ action_to_take_if_error_encountered }

� The parentheses, braces, double equals sign (==) and bold
characters (except for the filename zinputx) must be coded as
shown (they can wrap across multiple lines, if necessary)

Copyright � 2013 by Steven H. Comstock 25 File Access

C Functions For Accessing QSAM and HFS Files, 4

� Now let us examine the two arguments passed to fopen()

� First, the file specification; this can be any of

� A quoted literal HFS file name or z/OS file name:

if ((zinputx = fopen("/u/scomsto/data/myinputx", ...

� A string variable containing a [z/OS or HFS] file name (or at least
a variable that will contain a file name before the fopen is
executed):

char infile[] = "/u/scomsto/data/myinputx";
.
.
.
if ((zinputx = fopen(infile, ...

� A literal or variable that will contain the string DD:ddname before
fopen is issued:

if ((zinputx = fopen("DD:ZINPUTX", ...

or

char infile[] = "DD:ZINPUTX";
.
.
.
if ((zinputx = fopen(infile, ...

� In this case, the run time DD statement (or corresponding
ALLOCATE command) must point to the desired path or dataset

Copyright � 2013 by Steven H. Comstock 26 File Access

C Functions For Accessing QSAM and HFS Files, 5

� Now let us examine the two arguments passed to fopen(), continued

� Second, the open options; this can also be literal or character
string

� There are many options, and they may be specified only as needed
and in any order; most commonly used options:

� r - read file as text (delimited) file (may also be code as rt)

� w - write file as text (delimited) file (also wt)

� a - append data to text (delimited) file (also at)

� rb - read file as binary (non-delimited) file

� wb - write file as binary (non-delimited) file

� ab - append data to binary (non-delimited) file

� recfm= - record format, usual combinations of F, V, U, B, S

� lrecl= - logical record length

� blksize= - block size

� type=record - sequential record I/O; supports both HFS and
traditional z/OS files; open must be for rb, wb, or ab;

also used for VSAM files, both sequential and direct

Note

� A text file may only contain printable characters and control
characters; a binary file may contain any bit patterns

� Files opened with type=record must be opened as binary

Copyright � 2013 by Steven H. Comstock 27 File Access

Copyright � 2013 by Steven H. Comstock 28 File Access

C Functions For Accessing QSAM and HFS Files, 6

� Now let us examine the two arguments passed to fopen(), continued

� Second, the open options; this can also be literal or character string,
continued

Examples - as found in our provided programs

FILE *zinputx;
char zinputx_DD[] = "DD:ZINPUTX";
FILE *reprt;
char reprt_DD[] = "DD:REPRT";

if ((zinputx = fopen(zinputx_DD, "rb")) == NULL)
{ action_to_take_if_error_encountered }

if ((reprt = fopen(reprt_DD, "wb, lrecl=76, recfm=fb")) == NULL)
{ action_to_take_if_error_encountered }

FILE *in_file;
char in_name[58];
.
.
.
/* get file name into in_name */
.
.
.
if ((in_file = fopen(in_name, "rb,type=record")) == NULL)

{ action_to_take_if_error_encountered }

� Both approaches work for running under z/OS UNIX (omvs), TSO, and in
traditional batch

� The second approach allows you to prompt for the file name (or have it
passed as an argument) and it works for both HFS pathnames and for
z/OS file names using the "//dsn" convention for z/OS file names, as
discussed in earlier courses

C Functions For Accessing QSAM and HFS Files, 7

� So, what to make of the mysterious code described as
"action_to_take_if_error_encountered"?

� As with most error handling routines in any language, there is a
large number of possibilities but the most common seems to be
what we do:

� Display an error message (in C, use the printf() function)

� Leave the program, possibly specifying a non-zero return code (in C,
use the exit() function or return statement)

Putting it all together: the whole file declare and open:

FILE *zinputx;
char zinputx_DD[] = "DD:ZINPUTX";
FILE *reprt;
char reprt_DD[] = "DD:REPRT";

if ((zinputx = fopen(zinputx_DD, "rb")) == NULL)
{ printf("Can't open %s\n",zinputx_DD);
exit(1);

}

if ((reprt = fopen(reprt_DD, "wb, lrecl=76, recfm=fb")) == NULL)
{ printf("Can't open %s\n", reprt_DD);
exit(2);

}

FILE *in_file;
char in_name[58];
.
.
.
/* get file name into in_file */
.
.
.
if ((in_file = fopen(in_file, "rb,type=record")) == NULL)

{ printf("\nCan't open %s for reading.", in_file);
return -1;

}

Copyright � 2013 by Steven H. Comstock 29 File Access

C Functions For Accessing QSAM and HFS Files, 8

� We will leave a printf() discussion until later (idea should be generally
clear) and we will not say anything more about exit()

� Now we turn to reading and writing data, which is done using the
fread() and fwrite() functions, respectively

� The prototype for fread() in the documentation is:

int_bytes fread(*buffer, int_size, int_count, *file_name);

� Which can be interpreted as saying:

� the fread() function returns an integer indicating the number of
bytes read

� fread() is passed four arguments:

� Address of the buffer area to put the data

� size of chunks to read, as an integer (use maximum record
size)

� number of chunks to read, as an integer (use 1)

� address of the FILE thing from which data is read

� If the return value is zero, it indicates end of file has been
reached

Copyright � 2013 by Steven H. Comstock 30 File Access

C Functions For Accessing QSAM and HFS Files, 9

� One common construct of managing to read a file:

int no_bytes;
.
.
.
no_bytes = fread(&in_rec, sizeof(in_rec), 1, zinputx);

while (no_bytes > 0)
{

/* code to handle current record */
.
.
.
no_bytes = fread(&in_rec, sizeof in_rec, 1, zinputx);

}

� As an alternative, specify you are reading chunks of 1 byte and
specify a maximum record size in the number of chunks:

no_bytes = fread(in_data, 1, sizeof in_data, in_file);

Notes

� Coding an ampersand (&) followed by a variable name means
"the address of" the variable; use this for a structure

� Coding a name for a character string (which is always an array in
C), you can omit the ampersand: strings are always managed by
addresses

� General rules and details discussed shortly

Copyright � 2013 by Steven H. Comstock 31 File Access

C Functions For Accessing QSAM and HFS Files, 10

� The prototype for fwrite() in the documentation is:

int_chunks fwrite(*buffer, int_size, int_count, *file_name);

� Which can be interpreted as saying:

� the fwrite() function returns an integer indicating the number of
chunks written

� fwrite() is passed four arguments:

� Address of the buffer area to write from

� size of chunks to write, as an integer (use maximum record
size)

� number of chunks to write, as an integer (use '1')

� address of the FILE thing to which data is written

� If the return value is less than int_count, a write error occurred

� Typically, C programmers ignore the return value, and so are likely
to code fwrite() functions as if they were statements (verbs)
themselves:

fwrite(&out_rec, sizeof out_rec, 1, reprt);

� Instead of:

no_chunks = fwrite(&out_rec, sizeof out_rec, 1, reprt);

Copyright � 2013 by Steven H. Comstock 32 File Access

C Functions For Accessing QSAM and HFS Files, 11

� The prototype for fclose() in the documentation is:

int_success fclose(*file_name);

� Which can be interpreted as saying:

� the fclose() function returns an integer indicating if the close was
successful (value of 0) or not (non-zero values; details in the
docs)

� Again, programmers seldom check the return value, so fclose() is
often coded as:

fclose(zinputx);

fclose(reprt);

� Note that code written to be "bullet-proof" will check return values
from fwrite() and fclose(), in order to find out about errors and to
handle them

� I/O error handling is not discussed in this course

Copyright � 2013 by Steven H. Comstock 33 File Access

C Functions For Accessing QSAM and HFS Files, 12

� Now, to run in batch, specify DD statements for the DD names

� Point to z/OS data sets (DSN=...) or HFS data sets (PATH='/...')

� Unless pathname or dataset name is hard coded in the program

� To run under TSO, use allocate commands for a z/OS file or HFS file
(unless hard coded in the program), followed by a TSO CALL
command to the program name

� To run under omvs, issue TSO allocate commands for a z/OS file or
HFS file (unless hard coded in the program), then issue the program
name

Copyright � 2013 by Steven H. Comstock 34 File Access

COBOL - QSAM and HFS Access

� Classic COBOL programming can access both z/OS and HFS files,
as follows (note: COBOL is case insensitive except in literals):

Code components

� SELECT statement for a file, for example:

Environment division.
Input-output section.
File-control.

select zinputx assign to zinputx
file status is in-stat.

select reprt assign to reprt.

� FD (File Definition) entry for each file, followed by an 01-level
record layout (single line or complete structure), for example:

Data division.
File section.
fd zinputx

block contains 0 records.
01 in-rec pic x(100).

fd reprt.
01 out-rec pic x(76).

Copyright � 2013 by Steven H. Comstock 35 File Access

COBOL - QSAM and HFS Access, 2

� Classic COBOL programming, continued

Code components, continued

� Probably working-storage for record layout(s) and any file status
fields, work fields for calculations, constant data, and so on, for
example:

working-storage section.
01 in-record.

05 in-part-number pic x(9).
05 in-description pic x(30).
05 pic x(5).
05 in-unit-price pic 9999v999.
05 in-quantity-on-hand pic 99999.
05 in-quantity-on-ord pic 999.
05 in-reorder-level pic 999.
05 in-switch pic xx.
05 in-old-part-no pic x(9).
05 in-category pic x(10).
05 pic x(17).

01 reprt-record.
05 pic x(1) value spaces.
05 reprt-part-number pic x(9).
05 pic x(3) value spaces.
05 reprt-description pic x(30).
05 pic x(3) value spaces.
05 reprt-quantity-on-hand pic zz,zz9.
05 pic x(3) value spaces.
05 reprt-unit-price pic z,zz9.999.
05 pic x(2) value spaces.
05 reprt-value pic zzz,zz9.99.

77 more-records pic x value 'Y'.
77 work-value packed-decimal pic s9(7)v99.

77 in-stat pic 99 value 00.

Copyright � 2013 by Steven H. Comstock 36 File Access

COBOL - QSAM and HFS Access, 3

� Classic COBOL programming, continued

Code components, continued

� In the procedure division, code to open, read, process, and write,
and close files and records, for example:

Procedure division.
mainline.

open input zinputx output reprt

perform read-a-record
perform do-the-work until more-records = 'N'

close zinputx, reprt

stop run.

read-a-record.
read zinputx into in-record

at end move 'N' to more-records.

do-the-work.
move in-part-number to reprt-part-number
.
.
.
compute ...
write reprt-rec from reprt-record
perform read-a-record.

Copyright � 2013 by Steven H. Comstock 37 File Access

COBOL - QSAM and HFS Access, 4

� Now, to run in batch, specify DD statements for the DD names

� Point to z/OS data sets (DSN=...) or HFS data sets (PATH='/...')

� Or omit a DD statement and use environment variables in your
program to dynamically allocate file(s) you need, as discussed in
an earlier course

� To run under TSO, use allocate commands for a z/OS file or HFS file
(or omit a DD statement and use environment variables in your
program to dynamically allocate file(s) you need), followed by a TSO
CALL command to the program name

� To run under omvs, issue TSO allocate commands for a z/OS file or
HFS file (unless using dynamic allocation techniques mentioned
above), then issue the program name

Copyright � 2013 by Steven H. Comstock 38 File Access

COBOL - Native Access to HFS Files

� You can define HFS files using the Enterprise COBOL compiler

� In the SELECT statement, specify the organization as LINE
SEQUENTIAL

� In the FD specify the record contains from a minimum to a
maximum number of characters and one record per block

� In the 01 structure after the FD, specify a record equal to the
maximum size

� To connect the internal file to an external file, you can use the
ASSIGN TO value as

� A DD name (for a DD statement that uses PATH and other HFS
parameters)

� Or hard code or dynamically determine the path name prior to
open

� Or provide an environment variable at run time, as part of a
script or just coded as a command under omvs

� Open, close, read, and write are as for standard QSAM files in
COBOL

� Files declared as line sequential cannot be used to process
QSAM files

� The program fragments on the next two pages demonstrate many of
these techniques

Copyright � 2013 by Steven H. Comstock 39 File Access

COBOL - Native Access to HFS Files, 2

Identification division.
Program-id. app2co3x.
* Copyright (c) 2010 by Steven H. Comstock Ver2

Environment division.
Configuration section.
Special-names.

Sysin is path-input.
Input-output section.
File-control.

select inline assign to inline
line sequential status is line-seq-stat.

Data division.
File section.

FD inline
record varying from 12 to 1000 characters
block contains 1 records.

01 line-seq-line pic x(1000).

Working-storage section.
01 Status-stuff.

02 line-seq-stat pic 99 value 00.

01 File-stuff.
02 file-ptr pointer.
02 path-name.

03 pic x(12)
value 'INLINE=PATH('.

03 pathname pic x(100) value spaces.
03 pic xx value z' '.

02 rc pic s9(9) binary value 0.

01 inrec pic x(1000).
01 rec-work pic x(1000).
01 file-name-in pic x(100) value spaces.

Copyright � 2013 by Steven H. Comstock 40 File Access

COBOL - Native Access to HFS Files, 3

procedure division.
mainline.

accept file-name-in from path-input
string file-name-in delimited by space

')' delimited by size into pathname

set file-ptr to address of path-name
call 'putenv' using by value file-ptr returning rc

open input inline

if line-seq-stat = '00'
perform read-rec
...

else
display 'Open failed; file status = '

line-seq-stat
end-if

close inline
goback.

read-rec.
read inline into inrec
.
.
.

� Remember, these are just code fragments, excerpts from the code

� The entire program is found in your TR.COBOL library

Copyright � 2013 by Steven H. Comstock 41 File Access

PL/I - Accessing QSAM and HFS Files

� Classic PL/I programming can access both z/OS and HFS files, as
follows (note: PL/I is case insensitive except in literals):

Code components

� A DECLARE statement for each file, for example:

dcl zinputx file record sequential;
dcl reprt file record sequential output;

� A DECLARE for a variable for each input file to set at end of file,
and an ON unit to set the variable:

dcl more_to_do char(1) init('y');
.
.
.
on endfile(zinputx) more_to_do = 'n';

� Possibly other routines to handle conditions that can arise for
OPEN, READ, WRITE, or CLOSE in addition to endfile

� Such as ENDPAGE, ERROR, KEY, RECORD, TRANSMIT,
UNDEFINEDFILE; these are not discussed here

Copyright � 2013 by Steven H. Comstock 42 File Access

PL/I - Accessing QSAM and HFS Files, 2

� Classic PL/I programming, continued

Code components, continued

� DECLARE statement(s) for storage to hold record definitions, for
example

dcl 1 inrec,
2 i_part_no char(9),
2 i_description char(30),
2 i_rsv_1 char(5),
2 i_unit_price pic '9999v999',
2 i_qty_on_hand pic '99999',
2 i_qty_on_ord pic '999',
2 i_reorder_level pic '999',
2 i_switch char(2),
2 i_old_part_no char(9),
2 i_category char(10),
2 i_rsv_3 char(17);

dcl 1 outrec,
2 * char(1) init (' '),
2 o_part_no char(9),
2 * char(3) init (' '),
2 o_description char(30),
2 * char(3) init (' '),
2 o_qty_on_hand pic 'zz,zz9',
2 * char(3) init (' '),
2 o_unit_price pic 'z,zz9v.999',
2 * char(2) init (' '),
2 o_value pic 'zzz,zz9v.99';

Copyright � 2013 by Steven H. Comstock 43 File Access

PL/I - Accessing QSAM and HFS Files, 3

� Classic PL/I programming, continued

Code components, continued

� Imperative statements to open, read, write, close, and manage
data transfer, for example:

open file(zinputx), file(reprt) output;
read file(zinputx) into(inrec);

do while (more_to_do = 'y');
o_part_no = i_part_no;
.
.
.
o_value = i_qty_on_hand * i_unit_price;
write file(reprt) from(outrec);
read file(zinputx) into(inrec);

end; /* do report */

close file(zinputx), file(reprt);

� Note that a filename can be longer than 8 characters; if so, the
implied DD name is the first 8 characters of the file name

Copyright � 2013 by Steven H. Comstock 44 File Access

PL/I - Accessing QSAM and HFS Files, 4

� Another possibility is to use the TITLE option of the OPEN statement

� In this case, the value in TITLE can be an alternate DD name,
such as:

open file(zinputx) title(infil);

� Or, the value in the TITLE can be the absolute pathname of an
HFS file, preceded by a slash, for example:

open file(zinputx) title('//u/scomsto/indata');

Copyright � 2013 by Steven H. Comstock 45 File Access

PL/I - Accessing QSAM and HFS Files, 5

� Now, to run in batch, specify DD statements for the DD names

� Point to z/OS data sets (DSN=...) or HFS data sets (PATH='/...')

� Unless path hard coded in the program (in the TITLE), for HFS
files - then do not need DD statements

� To run under TSO, use allocate commands for a z/OS file or HFS file
(unless path hard coded in the program), followed by a TSO CALL
command to the program name

� To run under omvs, need to establish a value in an environment
variable with a name of DD_ddname

� ddname must be the file name or value in the TITLE option of the
open statement, and it must be upper case

� Using this approach, do not issue TSO allocate commands and
the files cannot be z/OS files, only HFS files

� This currently seems to be the only way to access HFS files from
PL/I, using native PL/I constructs and verbs, under omvs

Copyright � 2013 by Steven H. Comstock 46 File Access

Assembler - Accessing QSAM and HFS Files

� Note that the Assembler programmer has a lot of basic choices to
make that influence their code, in particular:

� Will the code be LE-compliant, or not?

� In order to use C functions, the Assembler code must be
LE-compliant - so our examples will follow that model

� Will the code be reenterant, or not?

� With current z/Architecture machines, reenterant code performs
better, so we will make our code reenterant

� Will the code run AMODE24, AMODE31, or AMODE64?

� Inter-module communication is faster when running AMODE31,
so we will run in that mode

� Will the code be loaded above the line or below it?

� To allow for the greatest flexibility, we will have the code loaded
above the line

� So our examples in lecture and for the labs will be Assembler code
that is LE-compliant, reenterant, running AMODE31 and RMODEANY

� Note that there are some examples in your TR.SOURCE library
that use different choices

Copyright � 2013 by Steven H. Comstock 47 File Access

Assembler - Accessing QSAM and HFS Files, 2

� Classic Assembler programming can access both z/OS and HFS
files, as follows (note: Assembler is case insensitive except in
literals, if the correct *PROCESS statement is included):

Code components

� A DCB statement for each file, for example:

ZINPUTX DCB DDNAME=ZINPUTX,MACRF=(GM),DSORG=PS,DCBE=ID
size_ind equ *-zinputx
REPRT DCB DDNAME=REPRT,MACRF=(PM),RECFM=FB, X

LRECL=76,DSORG=PS,DCBE=OD
size_out equ *-reprt

� We need the size of the DCBs to use when we move the DCBs
below the line

� DCBEs are needed if you will be running above the line

� DCBs have to be below the line, so they will point to the DCBEs,
which can have 31-bit addresses for such items as EODAD (the
end of data routine address)

� So we need DCBEs, then, for example:

ID DCBE RMODE31=BUFF,EODAD=ENDIN
dcbe_len equ *-id
OD DCBE RMODE31=BUFF
dcbo_len equ *-od

Copyright � 2013 by Steven H. Comstock 48 File Access

Assembler - Accessing QSAM and HFS Files, 3

� We will need the usual pieces of code to access files

� Control blocks to represent the files (DCBs and DCBEs as
mentioned)

� I/O areas to get data into and out of

� OPEN commands to connect the internal control blocks with
real, external files

� GET macro to read records

� An end of file routine to get control when there are no more
input records (point to this using the EODAD option on the
DCBE macro)

� Assembler instructions to process the input records and build an
output record

� PUT macro to write records

� CLOSE macros to disconnect from the external files (flush
buffers, write final blocks and any EOF indicators, and so on)

Copyright � 2013 by Steven H. Comstock 49 File Access

Assembler - Accessing QSAM and HFS Files, 4

� To make an Assembler program reenterant requires some planning,
so we start with a CEEENTRY macro and at the end we define areas
for storage to be gotten on entry to the program:

*PROCESS COMPAT(NOCASE,MACROCASE)
APP2A CEEENTRY PPA=MESSPA,AUTO=WORKSIZE

USING WAREAS,13
.
.
.
MESSPPA CEEPPA

LTORG
wareas dsect

org *+CEEDSASZ
openl open (,,,),mf=l,mode=31
dcbei dcbe rmode31=buff,eodad=endin
dcbeo dcbe rmode31=buff
* record layouts for input and output
inarea ds 0cl100
partno ds cl9
.
.
.
outarea ds 0cl76

ds cl1
rptpart# ds cl9
.
.
.
worksize equ *-wareas

CEEDSA
CEECAA
END APP2A

Copyright � 2013 by Steven H. Comstock 50 File Access

Assembler - Accessing QSAM and HFS Files, 5

� Also part of the price to pay to be reenterant is the need to have list
and execute forms of macros

� The list form (MF=L) generates control blocks with values

� The execute form (MF=(E,list_form) generates instructions to
request a service using the list form data

� We need to put the list forms into gotten storage so when we
invoke the execute forms the services will use the values found
in the gotten storage

� Similarly, this is why we put, for example, DCBEs in our constant
areas and in our dsect for the gotten storage: the DCBEs in the
dsect ensure we are reserving a large enough area of storage

� Putting all these pieces in place, we find the structure of our code
looks like this

� A CEEENTRY macro (note: automatically grabs storage above
the line as large as the AUTO parameter requests)

� A USING instruction

� A branch around the constants area

� The constants area

� Code to initialize the dsect areas

� GETMAIN to obtain storage below the line

� Code to move DCBs to the gotten area

� -- actual program processing

Copyright � 2013 by Steven H. Comstock 51 File Access

Assembler - Accessing QSAM and HFS Files, 6

� To put the pieces into some context, here we show larger fragments, in
the order we would have them in a program ...

*PROCESS COMPAT(NOCASE,MACROCASE)
APP2A CEEENTRY PPA=MESSPA,AUTO=WORKSIZE

USING WAREAS,13
bru the_code

openlsr open (,,,),mf=l,mode=31
openl_len equ *-openlsr
ZINPUTX DCB DDNAME=ZINPUTX,MACRF=(GM),DSORG=PS,DCBE=ID
size_ind equ *-zinputx
REPRT DCB DDNAME=REPRT,MACRF=(PM),RECFM=FB, X

LRECL=76,DSORG=PS,DCBE=OD
size_out equ *-reprt
ID DCBE RMODE31=BUFF,EODAD=GOBACK
dcbe_len equ *-id
OD DCBE RMODE31=BUFF
dcbo_len equ *-od
the_code ds 0h

mvc openl(openl_len),openlsr
mvc dcbei(dcbe_len),id
mvc dcbe0(dcbo_len),od
GETMAIN R,LV=SIZE_IND,LOC=BELOW
lr 5,1
mvc 0(size_ind,5),zinputx
la 8,dcbei
st 8,0(5)
GETMAIN R,LV=SIZE_OUT,LOC=BELOW
lr 6,1
mvc 0(size_out,6),reprt
la 8,dcbeo
st 8,0(6)
open ((5),(input),(6),(output)),mf=(e,openl),mode=31

� At this point, we now have two open files; assume we can leave R5
with the address of the input DCB and R6 with the address of the
output DCB

Copyright � 2013 by Steven H. Comstock 52 File Access

Assembler - Accessing QSAM and HFS Files, 7

� To get an input record, code something like this:

get (5),inarea

� Processing a record uses the appropriate Assembler code, then
to write out a record we would code:

put (6),outarea

� Our end of file routine might be simple like just issuing a close:

close ((5),,((6)),mf=(e,openl),mode=31

� Note that the execute form of the close can refer to the list form
of the open: they both generate the same size and layout of
memory

� After close we would probably exit using the CEETERM macro

� Finally, after our executable instructions we would code the
dsect type of information we discussed earlier, so we repeat that
much on the next page

Copyright � 2013 by Steven H. Comstock 53 File Access

Assembler - Accessing QSAM and HFS Files, 8

MESSPPA CEEPPA
LTORG

wareas dsect
org *+CEEDSASZ

openl open (,,,),mf=l,mode=31
dcbei dcbe rmode31=buff,eodad=endin
dcbeo dcbe rmode31=buff
* record layouts for input and output
inarea ds 0cl100
partno ds cl9
.
.
.
outarea ds 0cl76

ds cl1
rptpart# ds cl9
.
.
.
worksize equ *-wareas

CEEDSA
CEECAA
END APP2A

� Now, to run in batch, specify DD statements for the DD names

� Point to z/OS data sets (DSN=...) or HFS data sets (PATH='/...')

� To run under TSO, use allocate commands for a z/OS file or HFS file,
followed by a TSO CALL command to the program name

� To run under omvs, issue TSO allocate commands for a z/OS file or
HFS file, then issue the program name

Copyright � 2013 by Steven H. Comstock 54 File Access

Computer Exercise: Accessing HFS Files Under OMVS

Think of this past section as informational for when you do programming in
any of the languages we are discussing.

In this lab, you will run the program you worked with in the previous lab, but
now you will run it from under OMVS. To do this, you will:

1. copy the program to run from your tr.pdse library into your
bin directory (see the discussion on page 11)

2. get into OMVS, and run one of the supplied scripts.

All the scripts are found in your ~/scripts library, and they are:

runa - run APP2A
runc - run APP2C
runco - run APP2CO
runp - run APP2P

These scripts set environment variables and issue TSO allocate commands
as discussed on page 12, (runp also populates some additional environment
variables).

Run the scripts by entering, from the command line:

a dot a space the script name, like:

. runx

Copyright � 2013 by Steven H. Comstock 55 File Access

Computer Exercise: Accessing HFS Files Under OMVS, 2

Expected results:

On the omvs display:

runx Ver1 is setting up variables.
Remember to run this with a dot and space before runx.

Got to main program APP2x
Leaving program APP2x

In the TR.REPRT data set, the same report you saw on SYSOUT when you
ran the program in batch.

If you abend, you will find a dump in TR.CEEDUMP.

Copyright � 2013 by Steven H. Comstock 56 File Access

